# City of Birmingham, Alabama Post Construction Storm Water Quality Compliance Calculator USER GUIDE

| Purpose of the Calculator                            | 1  |
|------------------------------------------------------|----|
| Starting a New Project                               | 2  |
| Runoff Reduction Method                              | 3  |
| Using the 80% TSS Removal Standard                   | 12 |
| TSS Removal Method                                   | 12 |
| Runoff Reduction Method Combined with TSS Removal    |    |
| Curve Number Adjustment                              |    |
| Additional Functions                                 | 19 |
| Opening Project from File                            | 19 |
| Save Project to File                                 | 19 |
| Export Report                                        |    |
| Storm Water Quality Compliance Calculator User Guide | 19 |
| Download Maintenance Checklists                      |    |
| Download Maintenance Agreements                      | 19 |
| Access Helpful Resources                             | 20 |
|                                                      |    |



# Purpose of the Calculator

The Storm Water Quality Compliance Calculator is a tool that provides an easy method to evaluate whether proposed new developments and redevelopments are in compliance with the City of Birmingham's storm water quality protection standard. Please refer to Section 3.4 of the *Birmingham Post Construction Storm Water Manual* for more information related to storm water quality protections. The storm water quality standards are summarized below:

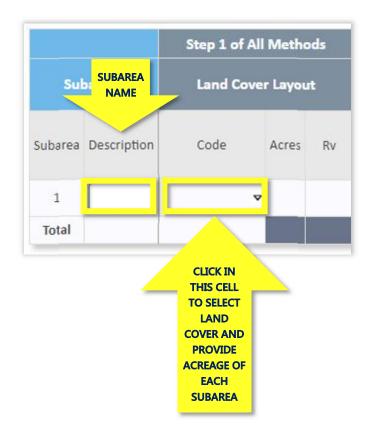
- 1. Manage the runoff volume generated by the 1.1-inch rainfall to obtain a weighted Rv ≤ 0.22 or 80% Total Suspended Solids (TSS) Removal for the applicable area.
  - a. For new developments, the applicable area is the entire development.
  - b. For a redevelopment, the applicable area is the amount of impervious surface added in the post-construction condition.
- 2. Generally, all impervious areas located within the applicable area must be managed for storm water quality by discharging to a Green Infrastructure Practice (GIP) and/or a TSS Removal Best Management Practice (BMP) prior to discharge downstream (to subsequent flood protection controls or offsite).
  - a. It is recognized that some developments will have "fringe areas," such as entry driveways, that are impracticable to manage via onsite GIPs or BMPs. The designer should eliminate such areas as much as practical. When impractical, designers should consult with the City to determine appropriate solutions.

With the calculator, you can quickly test different options for meeting Birmingham's storm water quality requirements. You can also view and download standard Maintenance Checklists and Agreements for GIPs used on site.



# Starting a New Project

| ton a film and and any |                              | TT               | and the second second second  |              |                                           |                 | /                       |
|------------------------|------------------------------|------------------|-------------------------------|--------------|-------------------------------------------|-----------------|-------------------------|
| NAVIGATION 1           | Gen                          | eral Information | Project Information           | Storm W      | ater Quality Calculations Curve Nu        | nber Adjustment |                         |
|                        |                              |                  | Locatio                       | n and Cont   | act Information                           |                 |                         |
| Development Name       |                              |                  |                               |              |                                           |                 |                         |
| Site Address           |                              |                  |                               | City         |                                           | ZIP             |                         |
| Site Owner             |                              |                  |                               |              | Contact Person                            |                 |                         |
| Office Phone           | Ex: 205-123-4567             |                  | M                             | obile Phone  | Ex: 205-123-4567                          | Email           | Ex: Johndoe@example.com |
| Site Designer          |                              |                  |                               |              | Contact Person                            |                 |                         |
| Address                |                              |                  |                               | City         |                                           | ZIP             |                         |
| Office Phone           | Ex: 205-123-4567             |                  | M                             | obile Phone  | Ex: 205-123-4567                          | Email           | Ex: johndoe@example.com |
| Alabama License        | Please select a license type |                  |                               |              | Active Alabama License #                  |                 |                         |
|                        |                              |                  |                               |              | rmation (Acres)                           |                 |                         |
|                        | New Development              |                  | Please choose either New Deve | lopment or R | edevelopment. Choice affects calculations | © Redevelopment |                         |
| Total site area        |                              |                  |                               |              | Total site area                           |                 |                         |
| Applicable area        |                              |                  |                               |              | Total impervious area -proposed site      |                 |                         |
|                        |                              |                  |                               |              | Total impervious area -existing site      |                 |                         |
|                        |                              |                  |                               |              | Area Requiring Water Quality Compliance   |                 |                         |


- 1. Enter project-specific data by clicking on Project Information Tab and entering information into each cell.
- 2. Click on the menu button and select the Save Project to File option in the pull-down list to save your new project. This feature will save your project file (\*\*\*.gip) in the Downloads folder on your computer. For more information on options in the menu, refer to the Additional Functions section of this manual on Page 19. This calculator does not have an autosave function, so remember to save your project often.
- 3. Click on the Storm Water Quality Calculations Tab and enter data for the storm water quality methods used on your site. The following sections provide guidance on this process.



# **Runoff Reduction Method**

(Follow along with Examples 4-1 through 4-3 in the Birmingham Post Construction Storm Water Manual)

STEP 1. Enter the specific land cover and acreage for each subarea of the site. The tool automatically assigns a Rv to every land cover and Hydrologic Soil Group (HSG) combination and produces the area-weighted Rv for the development. If the area-weighted Rv is less than or equal to 0.22, the site is in compliance. If it is greater than 0.22, revise the site layout. If it is still greater than 0.22, continue to Step 2.





#### PULL-DOWN LAND COVER TYPES MENU:

| Proposed Land Cover       |                         |      |      |           |       |                  |
|---------------------------|-------------------------|------|------|-----------|-------|------------------|
| Basic Land Cover Category | Land Cover              | Code | Rv   | RR Credit |       |                  |
| 1                         | Impervious Cover        | IC   | 0.95 | 0.05      |       | ctu              |
|                           | Meadow/Turf A           | ΜΤΛ  | 0.15 | 0.85      |       |                  |
| Basic Land Cover          | Meadow/lurf B           | MIB  | 0.20 | 0.80      |       | Tv<br>qui        |
| Basic Land Lover          | Meadow/Turf C           | MTC  | 0.22 | 0.78      |       | (ft <sup>3</sup> |
|                           | Meadow/Turf D           | MTD  | 0.26 | 0.74      |       |                  |
|                           | Meadow/Turf Urban Soils | MTUr | 0.26 | 0.74      |       | -                |
| 5.                        | Forest A                | FA   | 0.02 | 0.98      |       | -                |
|                           | Forest B                | FB   | 0.04 | 0.96      |       |                  |
|                           | Forest C                | FC   | 0.05 | 0.95      |       |                  |
|                           | Forest D                | FD   | 0.06 | 0.94      |       | 80.              |
|                           | Forest Urban Soils      | FUr  | 0.06 | 0.94      |       | 4                |
|                           | Urban Forest A          | UFA  | 0.1  | 0.9       |       |                  |
|                           | Urban Forest B          | UFB  | 0.13 | 0.87      |       | -                |
|                           | Urban Forest C          | UFC  | 0.15 | 0.85      |       |                  |
| Forestad                  | Urban Forest D          | UFD  | 0.18 | Clear     | ancel | 27               |



|         |             | Step 1 o | f All | Metho   | ods                 | Step 2 of Rv M |           | Step 3 of Rv                                                                               | Method |                                      |                                   |           |
|---------|-------------|----------|-------|---------|---------------------|----------------|-----------|--------------------------------------------------------------------------------------------|--------|--------------------------------------|-----------------------------------|-----------|
| Sul     | pareas      | Land C   | love  | r Layou | ut                  | Intrinsic Gl   |           | Structural GIP 1                                                                           |        | Structural (                         | GIP 2                             |           |
| Subarea | Description | Code     |       | Acres   | Rv                  | Code           | Eff<br>Rv | Tv Tv Achieved Eff                                                                         | Code   | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft <sup>3</sup> ) | Eff<br>Rv |
| 1       |             | FB       | ~     | 2       | 0.04                | v              | • 0.      | <i>If the area-weighted Rv is less than<br/>or equal to 0.22, the site is</i>              |        | •                                    |                                   | 0.04      |
| 2       |             | IC       | v     | 5       | 0. <mark>9</mark> 5 |                | 0         | <i>compliant. If it is greater than 0.22,</i><br><i>consider revising the site layout.</i> |        | ~                                    |                                   | 0.95      |
| 3       |             | MTB      | ~     | 3       | 0.20                | •              | 0.20      |                                                                                            |        | ~                                    |                                   | 0.20      |
| 4       |             |          | ~     |         |                     |                | 1         | ▼                                                                                          |        | ~                                    |                                   | )         |
| Total   |             |          |       | 10      | 0.54                |                | 0.54      | 0.54                                                                                       |        |                                      |                                   | 0.54      |

AREA-WEIGHTED Rv

|         |             | Step 1 o | fAll | Meth    | ods  | Step 2 of Rv M |           |                             |                                      | Ster                              | o 3 of Rv | Method |                                      |                                   |           |
|---------|-------------|----------|------|---------|------|----------------|-----------|-----------------------------|--------------------------------------|-----------------------------------|-----------|--------|--------------------------------------|-----------------------------------|-----------|
| Sul     | bareas      | Land C   | ove  | r Layou | nt   | Intrinsic G    |           |                             | Structural (                         | GIP 1                             |           |        | Structural (                         | GIP 2                             |           |
| Subarea | Description | Code     |      | Acres   | Rv   | Code           | Eff<br>Rv | Code                        | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft <sup>3</sup> ) | Eff<br>Rv | Code   | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft <sup>3</sup> ) | Eff<br>Rv |
| 1       |             | FB       | v    | 3       | 0.04 |                | 0.04      |                             |                                      |                                   | 0.04      |        | ,                                    |                                   | 0.04      |
| 2       |             | IC       | ~    | 4.25    | 0.95 |                |           | If revising the not achieve | -                                    |                                   |           |        | ,                                    |                                   | 0.95      |
| 3       |             | UFB      | v    | 2       | 0.13 |                |           | Rv that is le.              |                                      | -                                 |           |        | ,                                    |                                   | 0.13      |
| 4       |             | UFC      | v    | 0.75    | 0.15 |                | •         | 0.22, con                   | tinue to ST                          | TEP 2.                            | 0.15      |        | ,                                    |                                   | 0.15      |
| 5       |             |          | v    |         |      |                |           |                             | •                                    |                                   |           |        | ,                                    |                                   | ]         |
| Total   |             |          |      | 10      | 0.45 | -              | 0.45      |                             |                                      |                                   | 0.45      |        |                                      |                                   | 0.45      |

AREA-WEIGHTED Rv

**Post Construction Storm Water Quality Compliance Calculator** USER GUIDE (*ver. Aug. 2019*)



STEP 2. Enhance the ability of pervious land cover to reduce storm water volume through the use of Intrinsic GIPs (Downspout Disconnection, Grass Channels, and/or Sheet Flow). For subareas where the use of Intrinsic GIPs can be applied, select the method used in the pull-down list.

|         |             | Step 1 of | FAII | Meth  | ods  | Step 2 of Rv Me | thod      |      |                                      | Stej                              | 3 of Rv   | Method |                                      |                                   |     |
|---------|-------------|-----------|------|-------|------|-----------------|-----------|------|--------------------------------------|-----------------------------------|-----------|--------|--------------------------------------|-----------------------------------|-----|
| Su      | bareas      | Land Co   | ovei | Layou | ut   | Intrinsic GII   |           |      | structural (                         | GIP 1                             |           |        | Structural (                         | GIP 2                             |     |
| Subarea | Description | Code      |      | Acres | Rv   | Code            | Eff<br>Rv | Code | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft <sup>3</sup> ) | Eff<br>Rv | Code   | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft <sup>3</sup> ) | Eff |
| 1       |             | FB        | v    | 3     | 0.04 | ~               | 0.04      | v    |                                      |                                   | 0.04      | v      |                                      |                                   | 0.0 |
| 2       |             | IC        | ~    | 4.25  | 0.95 | ~               | 0.95      | ~    |                                      |                                   | 0.95      | ~      |                                      |                                   | 0.9 |
| 3       |             | UFB       | v    | 2     | 0.13 | ~               | 0.13      | v    |                                      |                                   | 0.13      | ~      |                                      |                                   | 0.1 |
| 4       |             | UFC       | V    | 0.75  | 0.15 | ~               | 0.15      | ~    |                                      |                                   | 0.15      | ~      |                                      |                                   | 0.1 |
| 5       |             |           | ⊽    |       |      | ~               |           | ~    |                                      |                                   |           | ~      |                                      |                                   | ]   |
| Total   |             |           |      | 10    | 0.45 |                 | 0.45      |      |                                      |                                   | 0.45      |        |                                      |                                   | 0.4 |

CLICK CELLS IN THIS COLUMN TO SELECT INTRINSIC GIPs

\* Note: Generally, all impervious areas located within the applicable area (defined as the entire site for new development and any added impervious area for redevelopment) must be managed for storm water quality by discharging to a GIP and/or a TSS Removal BMP prior to discharge.



#### PULL-DOWN MENU OPTIONS FOR INTRINSIC GIPS:

| GI Practice             | Level                                             | Code     | RR Credit | Rv   | TSS Credit (%) |
|-------------------------|---------------------------------------------------|----------|-----------|------|----------------|
| Downsnout Disconnection | level 1                                           | DD(1)    | 0.17      | 0.83 | 80             |
| Downspout Disconnection | level 2                                           | DD(2)    | 0.45      | 0.55 | 80             |
|                         | without compost amended soil level 1              | GC-WO(1) | 0.01      | 0.99 | 50             |
| Grass Channel           | without compost amended soil level 2              | GC-WO(2) | 0.20      | 0.80 | 50             |
| Grass Channel           | with compost amended soil level 1                 | GC-W(1)  | 0.12      | 0.88 | 50             |
|                         | with compost amended soil level 2                 | GC-W(2)  | 0.30      | 0.70 | 50             |
|                         | to pervious area level 1                          | SF-PA(1) | 0.45      | 0.55 | varies         |
|                         | to pervious area level 2                          | SF-PA(2) | 0.72      | 0.28 | varies         |
| Sheet Flow              | to filter strip with compost amended soil level 1 | SF-FS(1) | 0.45      | 0.55 | varies         |
|                         | to filter strip level 2                           | SF-FS(2) | 0.50      | 0.50 | varies         |
| Green Roof              | Green Roof 1                                      | G1       | 0.78      | 0.22 | 80             |
| Green Root              | Green Roof 2                                      | G2       | 0.89      | 0.11 | 80             |



In Example 4-2, an Intrinsic GIP (Sheet Flow) is applied to 0.75 acres of the parking area. To do this using the calculator, subtract 0.75 acres from the original impervious cover area (Subarea 2) and create a new row for the 0.75-acre impervious cover subarea. Select the appropriate Sheet Flow option from the pull-down list in the Step 2 – Intrinsic GIPs section of the calculator for this new area. Repeat this process for each area to which an Intrinsic GIP is applied.

|         |             | Step 1 of | All | Metho   | ods  | Step 2 of Rv Me | thod      |      |                                                               |
|---------|-------------|-----------|-----|---------|------|-----------------|-----------|------|---------------------------------------------------------------|
| Su      | bareas      | Land Co   | ove | r Layou | rt   | Intrinsic GI    | •         |      |                                                               |
| Subarea | Description | Code      |     | Acres   | Rv   | Code            | Eff<br>Rv | Code |                                                               |
| 1       |             | FB        | v   | 3       | 0.04 | ~               | 0.04      |      |                                                               |
| 2       |             | IC        | ~   | 2.75    | 0.95 | ~               | 0.95      |      |                                                               |
| 3       |             | UFB       | ~   | 2       | 0.13 | ~               | 0.13      |      |                                                               |
| 4       |             | UFC       | ~   | 0.75    | 0.15 | ~               | 0.15      |      | If applying Intrinsic GIPs does                               |
| 5       |             | IC        | ~   | 0.75    | 0.95 | SF-FS(2) 🔻      | 0.48      |      | not achieve an area-weighted<br>Rv that is less than or equal |
| 6       |             | IC        | ~   | 0.75    | 0.95 | DD(1) 🗢         | 0.79      |      | to 0.22, continue to STEP 3.                                  |
| 7       |             |           | v   |         |      | ~               |           | 1    |                                                               |
| Total   |             |           |     | 10      | 0.45 |                 | 0.41      |      |                                                               |

in Example 4-2 in the Manual but is rounded up to 0.41 in the Calculator.



STEP 3a. Implement Structural GIPs designed and constructed to enhance storm water runoff reduction through infiltration, harvest and use, or evapotranspiration. Revise/break out subareas as needed, and, for subareas where the use of Structural GIPs will be applied, select the GIP from the pull-down list. Manually enter the Tv Achieved by the Structural GIP in the "Tv Achieved" column. The "Tv Remaining" column will use this value to calculate the Tv Remaining. This cell will remain red until required volume has been treated. The following screenshots demonstrate what the calculator values are for Example 4-3. As you can see in this example, a Rv under 0.22 has been achieved.

|         |             | Step 1 o | f All | Meth    | ods  | Step 2 of Rv | Me | thod      |           |   |                                      | Ste                               | p 3 of R  | v Method |                                      |                                   |           | ſ.                                    |
|---------|-------------|----------|-------|---------|------|--------------|----|-----------|-----------|---|--------------------------------------|-----------------------------------|-----------|----------|--------------------------------------|-----------------------------------|-----------|---------------------------------------|
| Sul     | oareas      | Land C   | ove   | r Layou | ut   | Intrinsic    |    | B         |           |   | structural                           | GIP 1                             |           |          | Structural                           | GIP 2                             |           | Tv<br>Remaining                       |
| Subarea | Description | Code     |       | Acres   | Rv   | Code         |    | Eff<br>Rv | Code      |   | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft <sup>3</sup> ) | Eff<br>Rv | Code     | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft <sup>3</sup> ) | Eff<br>Rv | Tv<br>Remaining<br>(ft <sup>3</sup> ) |
| 1       |             | FB       | ~     | 3       | 0.04 |              | v  | 0.04      |           | v |                                      |                                   | 0.04      | ~        |                                      |                                   | 0.04      |                                       |
| 2       |             | IC       | ~     | 1.3     | 0.95 |              | v  | 0.95      | GIP-03(2) | ~ | 5424                                 |                                   | 0.27      | ~        |                                      |                                   | 0.27      | 5424                                  |
| 3       |             | UFB      | ~     | 2       | 0.13 |              | ~  | 0.13      |           | ~ |                                      |                                   | 0.13      | ~        |                                      |                                   | 0.13      |                                       |
| 4       |             | UFC      | ~     | 0.75    | 0.15 |              | ~  | 0.15      |           | v |                                      |                                   | 0.15      | ~        |                                      |                                   | 0.15      |                                       |
| 5       |             | IC       | ~     | 0.75    | 0.95 | SF-FS(2)     | V  | 0.48      |           | v |                                      |                                   | 0.48      | ~        |                                      |                                   | 0.48      | 2845                                  |
| 6       |             | IC       | ~     | 0.75    | 0.95 | DD(1)        | ~  | 0.79      |           | ~ |                                      |                                   | 0.79      | ~        |                                      |                                   | 0.79      | 2845                                  |
| 7       |             | IC       | ~     | 1.1     | 0.95 |              | v  | 0.95      | GIP-01(2) | ~ | 5216                                 |                                   | 0.21      | ~        |                                      |                                   | 0.21      | 5216                                  |
| 8       |             | FC       | ~     | 0.35    | 0.05 |              | V  | 0.05      |           | ~ |                                      |                                   | 0.05      | ~        |                                      |                                   | 0.05      |                                       |
| 9       |             |          | ~     |         |      |              | v  |           |           | ~ |                                      |                                   |           | ~        |                                      |                                   |           |                                       |
| Total   |             |          |       | 10      | 0.42 |              |    | 0.37      |           |   |                                      |                                   | 0.20      |          |                                      |                                   | 0.20      | 16330                                 |





|                    | Step 1 of | f All | Meth    | ods  | Step 2 of Rv | Me |                    |             |                                      | Ste                               | p 3 of I  | Rv Method                                                                                                      |                                      |
|--------------------|-----------|-------|---------|------|--------------|----|--------------------|-------------|--------------------------------------|-----------------------------------|-----------|----------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Subareas           | Land C    | ove   | r Layoi | ut   | Intrinsic    |    |                    |             | Structural                           | GIP 1                             |           | Structurel GIP 2                                                                                               | Tv<br>Remaini                        |
| ubarea Description | Code      |       | Acres   | Rv   | Code         |    | Eff<br>Rv          | Code        | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft <sup>3</sup> ) | Eff<br>Rv | Cells in this column will<br>calculate and display<br>remaining Tv and will turn<br>green when required volume | Tv<br>Remainir<br>(ft <sup>3</sup> ) |
| 1                  | FB        | ~     | 3       | 0.04 |              | ~  | <mark>0.0</mark> 4 | ~           |                                      |                                   | 0.04      | has been treated.                                                                                              | 4                                    |
| 2                  | IC        | ~     | 1.3     | 0.95 |              | V  | 0.95               | GIP-03(2) 🔻 | 5424                                 | 5424                              | 0.27      | ▼ 0.2                                                                                                          | 0                                    |
| 3                  | UFB       | V     | 2       | 0.13 |              | v  | 0.13               | ~           |                                      |                                   | 0.13      | <b>v</b> 0.1                                                                                                   | 3                                    |
| 4                  | UFC       | ~     | 0.75    | 0.15 |              | v  | 0.15               | ~           |                                      |                                   | 0.15      | <b>v</b> 0.1                                                                                                   | 5                                    |
| 5                  | IC        | v     | 0.75    | 0.95 | SF-FS(2)     | v  | 0.48               | ~           |                                      |                                   | 0.48      | ▼ 0.4                                                                                                          | 2845                                 |
| 6                  | IC        | V     | 0.75    | 0.95 | DD(1)        | ~  | <mark>0.79</mark>  | ~           | •                                    |                                   | 0.79      | <b>v</b> 0.7                                                                                                   | 2845                                 |
| 7                  | IC        | ~     | 1.1     | 0.95 |              | ~  | 0.95               | GIP-01(2) 🗢 | 5216                                 | 5216                              | 0.21      | ▼ 0.2                                                                                                          | 1 <b>0</b>                           |
| 8                  | FC        | ⊽     | 0.35    | 0.05 |              | v  | 0.05               |             |                                      |                                   | 0.0       | 0.0                                                                                                            | 5                                    |
| 9                  |           | ~     |         |      |              | v  |                    |             |                                      |                                   | )         | The cells in this column are                                                                                   |                                      |
| Total              |           |       | 10      | 0.42 |              |    | 0.37               |             |                                      |                                   | 0.20      | <i>provided as a check for the designer. Manually enter</i> 0.2                                                | 5690                                 |

This column calculates the Tv<sub>GP</sub>, (volume of storm water that should be managed by the GIP for compliance with the stormwater requirements).\*

\* Note: Tv Required in this column is only calculated for impervious areas. Generally, all impervious areas located within the applicable area (the entire site for new developments and any added impervious area for redevelopments) must be managed for storm water quality by discharging to a GIP and/or a TSS Removal BMP prior to discharge.



STEP 3b. Using Structural GIPs in a series. For subareas where the use of Structural GIPs can be applied in a series, use the Structural GIP 1 column to add downstream GIPs from the pull-down list. The following screenshot shows what the values in the tool will look like if you started with a site that had a 1- acre parking lot and 0.1 acres available to use for bioretention. Here, permeable pavers have been applied to 0.5 acres, and the runoff from this area is treated with the 0.1-acre bioretention area. The remaining 0.5 acres remains impervious, and the runoff from this area is also treated with the 0.1-acre bioretention area.

|         |             | Step 1 of | All  | Metho   | ods  | Step 2 of Rv M |           |           |    |                                      | Ste                               | p 3 of R  | v Method  |                                      |                                   |           |                                       |
|---------|-------------|-----------|------|---------|------|----------------|-----------|-----------|----|--------------------------------------|-----------------------------------|-----------|-----------|--------------------------------------|-----------------------------------|-----------|---------------------------------------|
| Sul     | bareas      | Land Co   | ovei | r Layou | nt   | Intrinsic G    |           |           | St | ructural (                           | GIP 1                             |           |           | Structural                           | GIP 2                             |           | Tv<br>Remaining                       |
| Subarea | Description | Code      |      | Acres   | Rv   | Code           | Eff<br>Rv | Code      | F  | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft <sup>3</sup> ) | Eff<br>Rv | Code      | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft <sup>3</sup> ) | Eff<br>Rv | Tv<br>Remaining<br>(ft <sup>3</sup> ) |
| 1       |             | IC        | ~    | 0.5     | 0.95 |                | 0.95      | GIP-03(1) | v  | 1897                                 | 1000                              | 0.58      | GIP-01(2) | <b>▽</b> 1447                        |                                   | 0.13      | 2344                                  |
| 2       |             | IC        | v    | 0.5     | 0.95 |                | 0.95      | GIP-01(2) | ~  | 2371                                 | 2371                              | 0.21      |           | ~                                    |                                   | 0.21      | 0                                     |
| 3       |             | FC        | v    | 0.1     | 0.05 |                | 0.05      | 11        | v  |                                      |                                   | 0.05      |           | ~                                    |                                   | 0.05      |                                       |
| 4       |             |           | ~    |         |      |                |           |           | ~  |                                      |                                   |           |           | ~                                    |                                   |           |                                       |
| Total   |             |           |      | 1.1     | 0.87 |                | 0.87      |           |    |                                      |                                   | 0.36      |           |                                      |                                   | 0.16      | 2344                                  |







# Using the 80% TSS Removal Standard

If GIPs have been used but they alone cannot achieve the Rv Standard of 0.22 or less or if GIPs are not used at all, you may apply the 80% TSS Removal Standard. The following sections provide instructions on how to use the Storm Water Quality Compliance Calculator to apply this standard.

### **TSS Removal Method**

If GIPs are not used at all, you must apply the 80% TSS Removal Standard. The following instructions provide guidance on applying TSS Removal BMPs to your site.

STEP 1. Enter the specific land cover and acreage for each subarea of the site. If the area-weighted Rv is greater than 0.22,

| SUBAREA             | Step 1 of | All Meti   | hods | Step 2 of Rv |           |      |                                      | Ste                               | p 3 of R | w Method |                         |                                   |           |                                       | Step 2 of T             | SS Removal I    | Method Onl     | y; or Step 4 of C       | ombined Rv      | & TSS Rem      | aval Method           |
|---------------------|-----------|------------|------|--------------|-----------|------|--------------------------------------|-----------------------------------|----------|----------|-------------------------|-----------------------------------|-----------|---------------------------------------|-------------------------|-----------------|----------------|-------------------------|-----------------|----------------|-----------------------|
| NAME                | cand Co   | iver Layo  | out  | Intrinsic    |           |      | Structural (                         | 31 <b>P 1</b>                     |          |          | Structural              | GIP 2                             |           | Tv<br>Remaining                       | TSS R                   | emoval BMP      | 1              | TSS R                   | emoval BMP      | 2              | %TSS Removal          |
| Subarea Description | Code      | Acre       | s Rv | Cade         | Eft<br>RV | Coce | Tv<br>Required<br>(fl <sup>3</sup> ) | Tv Achieved<br>[ft <sup>3</sup> ) | EH<br>Rv | Code     | Tv<br>Required<br>([l²) | Tv Achieved<br>(ft <sup>3</sup> ) | Ett<br>Rv | Tv<br>Remaining<br>(ft <sup>2</sup> ) | TSS Removal<br>BMP Code | TSS Credit<br>% | Tv<br>Achteved | TSS Removal<br>BMP Code | TSS Credit<br>% | Tv<br>Achleved | Total TSS Credit<br>% |
| 1                   | IC        | <b>v</b> 3 | 0.95 |              | • 0.05    | ~    |                                      |                                   | 0.95     |          | v                       |                                   | 0.95      | 11380                                 |                         | ,               |                | ~                       |                 |                | 0.0                   |
| 2                   |           | v          |      |              | 0         | ~    |                                      |                                   |          |          | •                       |                                   |           |                                       | 2                       | ,               |                | 0                       |                 |                |                       |
| Total               |           | з          | 0.95 |              | 0.95      |      |                                      |                                   | 0.95     |          |                         |                                   | 0.95      | 11380                                 |                         |                 |                |                         |                 |                |                       |

CLICK CELLS IN THIS COLUMN TO SELECT LAND COVER AND PROVIDE ACREAGE OF EACH SUBAREA

*This column displays the TV<sub>TOTAL</sub> for each impervious cover subarea. Values entered in the Tv Achieved cells will be deducted from the Tv Remaining.* 



STEP 2. Employ TSS Removal BMPs to meet the 80% TSS Removal Standard. These BMPS include extended detention ponds, wet ponds, and sand filters. For subareas where the use of TSS Removal BMPs can be applied, select the method used in the pull-down list.

|          |             | Step 1 of | All Meth   | ods  | Step 2 of Rv I |           |      |                                      | Ste                               | p 3 of R | w Method |                                      |                                   |           |                                       | Step 2 of T             | SS Removal      | Method Oni     | y; or Step 4 of C       | ombined Rv      | & TSS Rem      | aval Method           |
|----------|-------------|-----------|------------|------|----------------|-----------|------|--------------------------------------|-----------------------------------|----------|----------|--------------------------------------|-----------------------------------|-----------|---------------------------------------|-------------------------|-----------------|----------------|-------------------------|-----------------|----------------|-----------------------|
| Subareas |             | Land Co   | ver Layo   | ut   | Intrinsic (    |           |      | Structural                           | GI <b>P 1</b>                     |          |          | Structural                           | GIP 2                             |           | Tv<br>Remaining                       | TSS R                   | emoval BMP      | 1              | TSS R                   | emoval BMP      | 2              | %TSS Removal          |
| Subarea  | Description | Code      | Acres      | Rv   | Code           | Ett<br>Rv | Code | Tv<br>Required<br>(fl <sup>3</sup> ) | Tv Achieved<br>[ft <sup>3</sup> ] | EH<br>Rv | Code     | Tv<br>Required<br>(ft <sup>2</sup> ) | Tv Achieved<br>(ft <sup>3</sup> ) | Ett<br>Rv | Tv<br>Remaining<br>(fl <sup>2</sup> ) | TSS Removal<br>BMP Code | TSS Credit<br>% | Tv<br>Achleved | TSS Removal<br>BMP Code | TSS Credit<br>% | Tv<br>Achleved | Total TSS Credit<br>% |
| 1        |             | IC        | <b>▼</b> 3 | 0.95 |                | • 0.95    |      |                                      |                                   | 0.95     |          | v                                    |                                   | 0.95      | 11380                                 |                         | ,               |                |                         | •               |                | 0.0                   |
| 2        |             |           | v          |      |                | 0         |      | ,                                    |                                   |          |          | ♥                                    | []                                | ]         |                                       | 2                       | 2               |                |                         | •               |                |                       |
| Total    |             |           | з          | 0.95 |                | 0.95      |      |                                      |                                   | 0.95     |          |                                      |                                   | 0.95      | 11380                                 |                         |                 |                |                         |                 |                |                       |





#### PULL-DOWN MENU OPTIONS FOR TSS REMOVAL BMPS:

| SS Removal BMP                               |      |                            |
|----------------------------------------------|------|----------------------------|
| Structural Control                           | Code | TSS Credit (%)             |
| Dry Detention Pond                           | DP   | 60                         |
| Dry Extended Detention Pond                  | DEP  | 60                         |
| Water Quality Swale/Enhanced Swale           | ES   | 80                         |
| Gravity (oil-grit) Separator                 | GS   | 40                         |
| Open Channel                                 | oc   | 50                         |
| Sand Filters (Surface & Perimeter)           | SF   | 80                         |
| Storm Water Wetland/Submerged Gravel Wetland | GW   | 80                         |
| Storm Water Wet Ponds                        | SWP  | 80                         |
| Underground Detention                        | UD   | Enter TSS Credit % Manuall |
| Manufactured Treatment Device                | MTD  | Enter TSS Credit % Manuall |

|                   | St     | ep 1 of | All Meth   | ods  | Step 2 of Rv N |           |      |                                | -                  |      | ater wet pond is us                        |                    |         | Step 2 of               | ISS Removal     | Method On      | y; or Step 4 of C         | ombined Rv &    | & TSS Rem      | oval Method      |
|-------------------|--------|---------|------------|------|----------------|-----------|------|--------------------------------|--------------------|------|--------------------------------------------|--------------------|---------|-------------------------|-----------------|----------------|---------------------------|-----------------|----------------|------------------|
| Subareas          |        | Land Co | wer Layo   | ut   | Intrinsic C    |           |      |                                |                    |      | e impervious area, v<br>% TSS Removal star |                    | naining | TSS                     | Removal BMF     | •1             | TSS Removal BMP 2         |                 | %TSS Removal   |                  |
| Subarea Descripti | tion ( | Code    | Acres      | Rv   | Code           | Cff<br>Hv | Code | Required<br>(ft <sup>3</sup> ) | (ft <sup>3</sup> ) | Rv   | соце кеquired<br>(ft <sup>3</sup> )        | (ft <sup>3</sup> ) | Tv      | TSS Removal<br>BMP Code | TSS Credit<br>% | Tv<br>Achieved | T\$5 Removal<br>BIMP Code | TSS Credit<br>% | Tv<br>Achieved | Total TSS Credit |
| 1                 |        | IC      | <b>v</b> 3 | 0.95 | 3              | v 0.95    |      | ~                              | [                  | 0.95 | ♥                                          |                    | 0.95 0  | SWP                     | <b>v</b> 80     | 11380          |                           |                 |                | 80.0             |
| 2                 |        |         | v          |      | 8              | •         |      | ~                              |                    |      | ~                                          |                    |         | 3                       | ~               |                | -                         |                 |                |                  |
| Total             |        |         | з          | 0.95 |                | C.95      |      |                                |                    | 0.95 |                                            |                    | 0.95 0  |                         |                 |                |                           |                 |                | 80.00            |

*If the area-weighted %TSS Removal is greater than or equal to 80%, the site is compliant. If it is less than 80%, consider revising the site layout.* 



### Runoff Reduction Method Combined with TSS Removal

80% TSS Removal must be achieved for the remainder of the treatment volume if GIPs have been used. Examples of BMPs that will be employed to meet this standard include extended detention ponds, sand filters, and wet ponds.

STEP 1. Refer to the Runoff Reduction Section of this User Guide for instructions on how to use the Storm Water Quality Compliance Calculator to apply GIPs to your site.

|         |             | Step 1 o                                                                            | f All                     | Meth    | ods  | Step 2 of Rv I | Method    |             |                                      | Ste                                                                                                                         | p 3 of Rv                              | Method                           |                                      |                                   |           |                                       |
|---------|-------------|-------------------------------------------------------------------------------------|---------------------------|---------|------|----------------|-----------|-------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------|--------------------------------------|-----------------------------------|-----------|---------------------------------------|
| Sut     | areas       | Land C                                                                              | ove                       | r Layoı | ut   | Intrinsic      | GIP       |             | Structural                           | GIP 1                                                                                                                       |                                        |                                  | Structural                           | GIP 2                             |           | Tv<br>Remaining                       |
| Subarea | Description | Code                                                                                |                           | Acres   | Rv   | Code           | Eff<br>Rv | Code        | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft³)                                                                                                        | Eff<br>Rv                              | Code                             | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft <sup>3</sup> ) | Eff<br>Rv | Tv<br>Remaining<br>(ft <sup>3</sup> ) |
| 1       |             | IC                                                                                  | ~                         | 3       | 0.95 |                | ♥ 0.95    | GIP-01(1) 🗢 | 11380                                | 6000                                                                                                                        | 0.42                                   |                                  | ~                                    |                                   | 0.42      | 5380                                  |
| 2       |             |                                                                                     | ~                         |         |      |                | ~         | ~           |                                      |                                                                                                                             |                                        |                                  | ~                                    |                                   |           |                                       |
| Total   |             |                                                                                     |                           | 3       | 0.95 |                | 0.95      |             |                                      |                                                                                                                             | 0.42                                   |                                  |                                      |                                   | 0.42      | 5380                                  |
|         |             | CLICK CEL<br>IN THIS<br>COLUMN<br>SELECT LA<br>COVER A<br>PROVID<br>ACREAGE<br>EACH | TO<br>ND<br>ND<br>E<br>OF |         |      |                |           |             | treat the<br>only tre<br>may be      | evel 1 Bioretem<br>3-acre impervice<br>eat 6000 ft <sup>3</sup> . A T.<br>applied to hance<br><sup>3</sup> of required tree | ous area, l<br>SS Remov<br>lle the rei | but it can<br>ral BMP<br>maining | >                                    |                                   |           |                                       |



STEP 2. Employ TSS Removal BMPs to meet the 80% TSS Removal Standard. For subareas where the use of TSS Removal BMPs can be applied, select the method used in the pull-down list.

|                      | Step 1 o | f All Meth | ods  | Step 2 of Rv |           |             |                                      | Ste                  | p 3 of R  | v Method |                                      |                                   |           |                                       | Step 2 of T             | SS Removal      | Method Onl     | y; or Step 4 of C       | ombined Rv      | & TSS Rem      | oval Method           |
|----------------------|----------|------------|------|--------------|-----------|-------------|--------------------------------------|----------------------|-----------|----------|--------------------------------------|-----------------------------------|-----------|---------------------------------------|-------------------------|-----------------|----------------|-------------------------|-----------------|----------------|-----------------------|
| Subareas             | Land C   | over Layo  | ut   | Intrinsic    |           |             | Structural                           | GIP 1                |           |          | Structural                           | GIP 2                             |           | Tv<br>Remaining                       | TS5 R                   | emoval BMP      | 1              | TSS R                   | emoval BMP      | 2              | %TSS Removal          |
| Subarea. Description | Code     | ÁCIPN      | Rv   | Code         | Eſſ<br>Rv | Code        | TV<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(f:³) | eff<br>Rv | Gale     | TV<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft <sup>3</sup> ) | e(ſ<br>Rv | TV<br>Remaining<br>(ft <sup>3</sup> ) | TSS Removal<br>BMP Code | TSS Credil<br>% | Tv<br>Achieved | TSS Removal<br>BMP Code | TSS Credit<br>% | Tv<br>Achieved | Total TSS Credit<br>% |
| 1                    | IC       | ♥ 3        | 0.95 |              | ♥ C.95    | GIP-01(1) < | • 11380                              | 6000                 | 0,42      |          | v                                    |                                   | 0.42      | 5380                                  |                         | >               |                | -                       |                 |                | 85.0                  |
| 2                    |          | v          |      |              | v         | x           | ,                                    | [                    |           |          | v                                    |                                   |           |                                       |                         | -               |                |                         | e               |                |                       |
| Total                |          | з          | 0.95 |              | 0.95      |             |                                      |                      | 0.42      |          |                                      |                                   | 0.42      | 5380                                  |                         |                 |                |                         |                 |                | 85.00                 |

#### PULL-DOWN MENU OPTIONS FOR TSS REMOVAL BMPS:

| SS Removal BMP                               |      |                             |
|----------------------------------------------|------|-----------------------------|
| Structural Control                           | Code | TSS Credit (%)              |
| Dry Detention Pond                           | DP   | 60                          |
| Dry Extended Detention Pond                  | DEP  | 60                          |
| Water Quality Swale/Enhanced Swale           | ES   | 80                          |
| Gravity (oil-grit) Separator                 | GS   | 40                          |
| Open Channel                                 | ос   | 50                          |
| Sand Filters (Surface & Perimeter)           | SF   | 80                          |
| Storm Water Wetland/Submerged Gravel Wetland | GW   | 80                          |
| Storm Water Wet Ponds                        | SWP  | 80                          |
| Underground Detention                        | UD   | Enter TSS Credit % Manually |
| Manufactured Treatment Device                | MTD  | Enter TSS Credit % Manually |





|                 |      | Step 1 of | All Meth   | ods  | Step 2 of Rv |          |             |                                      | Ste                               | p 3 of R  | v Method |                                      |                                   |           |                                       | Step 2 of T             | SS Removal I    | Method Onl     | y; or Step 4 of C       | ombined Rv      | & TSS Rem      | oval Method           |
|-----------------|------|-----------|------------|------|--------------|----------|-------------|--------------------------------------|-----------------------------------|-----------|----------|--------------------------------------|-----------------------------------|-----------|---------------------------------------|-------------------------|-----------------|----------------|-------------------------|-----------------|----------------|-----------------------|
| Subareas        |      | Land Co   | over Leyo  | ut   | Intrinsic    |          |             | Structural                           | GIP 1                             |           |          | Structural                           | GIP 2                             |           | Tv<br>Remaining                       | TS5 R                   | emoval BMP      | 1              | TSS R                   | emoval BMP      | 2              | %TSS Removal          |
| Subarea Descrip | pton | Code      | Acres      | Rv   | Cocie        | CH<br>RV | Code        | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ît <sup>2</sup> ) | Eff<br>HV | Code     | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft <sup>3</sup> ) | Ett<br>Rv | Tv<br>Remaining<br>(ft <sup>3</sup> ) | TSS Removal<br>BMP Code | TSS Credit<br>% | Tv<br>Achieved | TSS Removal<br>BMP Code | TSS Credit<br>% | Tv<br>Achieved | Total TSS Credit<br>% |
| 1               |      | IC        | <b>v</b> 3 | 0.95 |              | ♥ 0.95   | GIP-01(1) 🔻 | 11380                                | 6000                              | 0.42      | ,        | ,                                    |                                   | 0.42      | 5380                                  | 00 3                    | 50              |                | DEP V                   | 60              |                | 85.0                  |
| 2               |      |           | 7          |      |              | ~        | •           |                                      |                                   |           |          | ,                                    |                                   |           |                                       |                         | •               |                |                         |                 |                |                       |
| Total           |      |           | 3          | 0.95 |              | 0.95     |             |                                      |                                   | 0.42      |          |                                      |                                   |           | 5380                                  |                         |                 |                |                         |                 |                | 85.00                 |

*Here, an open channel draining to dry extended detention is used to treat the remainder of the volume not treated by the GIP.* 

If the area-weighted %TSS Removal is greater than or equal to 80%, the site is compliant. If it is less than 80%, consider revising the site layout.



# Curve Number Adjustment

(Follow along with Example 4-5 in the Birmingham Post Construction Storm Water Manual)

- 1. Go to Curve Number Adjustment Tab to determine the adjusted curve number and total runoff (Q) to use for detention sizing on sites that implement GIPs.
- 2. Manually enter the original site curve number. The total acres of the site and the Treatment Volume are automatically populated from the Storm Water Quality Calculations tab.

| mingnam Pos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t Construction S          | torm Water Qualit                                       | ty Compliance Calculat                                                     |                                                                                                              |                |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | General Informatio        | on Project Information                                  | Storm Water Quality Calculation                                            | s Curve Number Adjustment                                                                                    |                |  |  |  |  |  |  |  |
| The capture of storm water by structural GIPs changes the runoff depth entering downstream detention structures. As a result, the lower depth can be considere<br>when sizing detention structures on developments that implement GIPs.<br>This is done by adjusting the curve number (CN) for the development. The adjusted curve number can be used for all return period events required for detention si<br>For more information on curve number adjustments, refer to Chapter 4.2.6 of the Birmingham Post-Construction Storm Water Design Manual. |                           |                                                         |                                                                            |                                                                                                              |                |  |  |  |  |  |  |  |
| This is done by a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | djusting the curve number | when sizing detention st<br>(CN) for the development. T | ructures on developments that imple<br>he adjusted curve number can be use | nent GIPs.<br>I for all return period events required for det                                                | ention sizing. |  |  |  |  |  |  |  |
| This is done by a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | djusting the curve number | when sizing detention st<br>(CN) for the development. T | ructures on developments that imple<br>he adjusted curve number can be use | nent GIPs.<br>I for all return period events required for deta<br>ist-Construction Storm Water Design Manual | ention sizing. |  |  |  |  |  |  |  |

| Ste | o 3 of Rv | Method |                                      |                      |           |                                       | Step 2 of T             | SS Removal I                                 | Method Only    | ; or Ste     |  |  |
|-----|-----------|--------|--------------------------------------|----------------------|-----------|---------------------------------------|-------------------------|----------------------------------------------|----------------|--------------|--|--|
|     |           |        | Structural (                         | GIP 2                |           | Tv<br>Remaining                       | TSS R                   | emoval BMP                                   | 1              |              |  |  |
| ved | Eff<br>Rv | Code   | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft³) | Eff<br>Rv | Tv<br>Remaining<br>(ft <sup>3</sup> ) | TSS Removal<br>BMP Code | TSS Credit<br>%                              | Tv<br>Achieved | TSS R<br>BMP |  |  |
|     | 0.21      | ~      |                                      |                      | 0.21      | 7113                                  | to                      | nent Volume<br>calculate the<br>ed Curve Nur | 9              |              |  |  |
|     | 0.21      |        |                                      |                      | 0.21      | 7113                                  | adjusted Curve Number.  |                                              |                |              |  |  |



# Additional Functions

By clicking on the Menu button in the top right corner or your screen, you can access additional functions of the calculator.

| Birmingham Post Construction Storm Water Quality | Compliance Cal      | culator                                                  |         |
|--------------------------------------------------|---------------------|----------------------------------------------------------|---------|
| General Information                              | Project Information | Storm Water Quality Calculations Curve Number Adjustment | · · · · |
| Development Name                                 | Locat               | ion and Contact Information                              |         |

# **Opening Project from File**

Select this option from the pull-down menu to navigate to the location of a saved project file and open the project in the calculator.

### Save Project to File

Select this option from the pull-down menu to save your current project as a file you can open for later use.

### Export Report

Select this option from the pull-down menu to create a summary report and print.

### Storm Water Quality Compliance Calculator User Guide

Select this option from the pull-down menu to access this User Guide for help and additional information regarding the calculator.

### Download Maintenance Checklists

Select this option from the pull-down menu to download Maintenance Checklists for the GIPs used on site.

### Download Maintenance Agreements

Select this option from the pull-down menu to download example Maintenance Agreements for the GIPs used on site.



# Access Helpful Resources

Clicking on the GIP name in a column allows you to download the GIP Specification. You can also download GIP specifications from the General Information tab.

|         |             | Step 1 o | fAll | Meth   | ods  | Step 2 of Rv Me                        | thod      |             |                                      | Ster                              | o 3 of Rv | Method |                                      |                                   |           |
|---------|-------------|----------|------|--------|------|----------------------------------------|-----------|-------------|--------------------------------------|-----------------------------------|-----------|--------|--------------------------------------|-----------------------------------|-----------|
| Sul     | bareas      | Land C   | over | r Layo | ut   | Intrinsic GII                          |           |             | Structural (                         | SIP 1                             |           |        | Structural (                         | GIP 2                             |           |
| Subarea | Description | Code     |      | Acres  | Rv   | Code                                   | Eff<br>Rv | Code        | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft <sup>3</sup> ) | Eff<br>Rv | Code   | Tv<br>Required<br>(ft <sup>3</sup> ) | Tv Achieved<br>(ft <sup>3</sup> ) | Eff<br>Rv |
| 1       |             | FB       | ~    | 3      | 0.04 | ~                                      | 9,04      | V           |                                      |                                   | 0.04      | V      |                                      |                                   | 0.04      |
| 2       |             | IC       | ~    |        |      | P OR BMP CODES TO<br>GIP SPECIFICATION |           | GIP-03(2) 🔻 | 5424                                 | 5424                              | 0.27      | ~      |                                      |                                   | 0.27      |
| 3       |             | UFB      | ~    | 2      | 0.13 | ~                                      | .13       | •           | •                                    |                                   | 0.13      | ~      |                                      |                                   | 0.13      |
| 4       |             |          | ~    |        |      | V                                      |           | v           |                                      |                                   |           | V      |                                      |                                   |           |
| Total   |             |          |      | 6.3    | 0.26 |                                        | 0.26      |             |                                      |                                   | 0.12      |        |                                      |                                   | 0.12      |



