United States Environmental Protection Agency Region 4 Science and Ecosystem Support Division 980 College Station Road Athens, Georgia 30605-2720

Village Creek Dieldrin Screening Final Report

Birmingham, AL June 2015

SESD Project Identification Number: 15-0308

Requestor: Gina Fonzi Water Protection Division 61 Forsyth St. SW Atlanta, Georgia 30303-8960 **SESD Project Leader: Jerry Ackerman** Field Services Branch, SESD 980 College Station Road Athens, Georgia 30605-2720

Title and Approval Sheet

Title: Village Creek Dieldrin Screening Final Report

Approving Official:

Stacey Box, Chief Ecology Section Field Services Branch

11/15

Date

SESD Project Leader:

\$10/15

Jerry Ackerman, Life Scientist Ecology Section Field Services Branch

Date

Table of Contents

1	Inti	oduction4
2	Me	thods
	2.1	Site Description
	2.2	Study Design and Sampling Methods
	2.3	Analytical Methods
3	Res	ults/Discussion
	3.1	In Situ Water Quality
	3.2	Surface Water Results
	3.3	Quality Control
4	Cor	clusion
5	Ref	erences
Fi	gure 1	: Village Creek Sample Locations
T٤	ble 1	Sample Locations
T٤	ble 2	<i>In situ</i> water quality9
Т٤	ible 3.	Surface water results
T٤	ble 4	Comparison of 2000-2001 USGS data to 2015 USEPA data 10
T٤	ble 5	Measurement uncertainty10
St	ation	Photographs
A	opend	ix A (Analytical Reports)
Aj	opend	ix B (Field Logbook)

1 Introduction

Village Creek has been classified as impaired by the Alabama Department of Environmental Management (ADEM) for the legacy pesticide dieldrin. Dieldrin is an organochlorine pesticide and by-product of the pesticide aldrin. It was used from 1950 to 1974 for insect control on cotton, corn, and citrus crops. Other uses included mosquito and termite control as well as a wood preservative. Dieldrin was banned by the EPA in 1974 for use as a pesticide and in 1987 for use in termite control. Dieldrin is no longer produced in the United States due to its harmful and bioaccumulative effects on humans, fish and wildlife. It is persistent and does not break down easily in our environment. Potential sources to our environment include: soil surrounding wooden structures treated for termites, soil or sediment, improper use or disposal, contaminated fish and shellfish (USEPA 2011a).

In collaboration with ADEM and the City of Birmingham, the Water Protection Division (WPD) requested the Science and Ecosystem Support Division (SESD) to collect and analyze surface water samples for dieldrin to assist in the possible removal of Village Creek from the 303d list of impaired waters. Prior sampling events included an extensive study conducted by the U.S. Geological Survey (USGS) in 2000-2001, which provided sufficient data to list Village Creek as impaired based on dieldrin concentrations exceeding the human health criterion of 0.00003 μ g/L (0.03 ng/L), at levels up to 0.007 μ g/L (7.0 ng/L; Table 4). ADEM collected additional data in 2012 at 6 stations monthly for 8 months. Concentrations of dieldrin in all samples were less than the method detection limit of 0.0028 μ g/L (2.8 ng/L) but it was unknown whether concentrations exceeded the human health criteria of 0.00003 μ g/L.

2 Methods

2.1 Site Description

The Village Creek Basin lies in the Ridge and Valley ecoregion and the Southwestern Appalachians ecoregion in Birmingham, Jefferson County, Alabama (Figure 1). The watersheds in these regions are characterized as moderate to low gradient streams with bedrock, cobble, gravel and sandy substrates (Griffith et al. 2001). Village Creek flows through an intensely urbanized watershed containing several industrial and municipal point and nonpoint sources of contamination (McPherson et al. 2002) including a golf course and Birmingham International Airport.

2.2 Study Design and Sampling Methods

Assessment sites were all within the Village Creek watershed in Jefferson County, AL. These sites were the same sites that USGS sampled in the 2000-2001 water quality investigation which prompted the 303d listing for dieldrin (McPherson et al., 2002). The four stations were sampled on the afternoon of June 3, 2015 (see Table 1 and Figure 1) in accordance with the Village Creek Dieldrin Screening Quality Assurance Project Plan (QAPP) and Study Plan (USEPA 2015b). Surface water was sampled for water chemistry and water quality using a downstream to upstream

approach. Samples were collected (while wading and facing upstream) at approximately midstream mid-depth, by submerging sample containers into the stream and allowing bottles to fill to the appropriate level (USEPA 2013d). Surface water samples were placed in a cooler of wet ice to preserve at a temperature <6°C. *In situ* water quality data (temperature, dissolved oxygen, pH and specific conductance) were collected using multi-parameter sondes (USEPA 2013b). Stream discharge was measured at VIL1 with an acoustic Doppler velocimeter (ADV), as described in the Operating Procedure for Hydrological Studies (USEPA 2012b). Discharge data was acquired from the U.S. Geological Survey website at http://waterdata.usgs.gov for the following stations: VIL2, VIL3 and VIL4 (USGS station numbers 02458300, 02458450 and 02458600, respectively). Global Positioning System (GPS) coordinates were recorded on handheld devices using map datum WGS84 in decimal degrees (USEPA 2011b). Photographs were taken at each sample site and recorded in the field logbook.

2.3 Analytical Methods

Surface water samples were analyzed using EPA Method 8270D, modified for select ion monitoring (SIM) gas chromatograph/mass spectrophotometer/mass spectrophotometer (GC/MS/MS), with a minimum reporting limit (MRL) for dieldrin of $0.000098 \mu g/L$ (0.098 ng/L). The actual MRL for this study varied among samples and is lower than specified in the QAPP ($0.0002 \mu g/L$; USEPA 2015b) due to increased sample volume and use of a lower calibration standard. This method was selected due to its low cost, as well as its lower detection limit for dieldrin compared to Method 8081. Sample analysis was performed by the SESD laboratory and was analyzed in accordance with the Analytical Support Branch Laboratory Operations and Quality Assurance Manual (ASB LOQAM) (USEPA 2015a). The analytical method, equipment and standards, calibration procedures, extraction and digestion procedures, laboratory decontamination procedures, waste disposal procedures, corrective actions, and any specific method performance requirements are specified in the LOQAM.

3 Results/Discussion

3.1 *In Situ* Water Quality

In situ water quality data are compared to Alabama's water quality criteria in Table 2. Water quality parameters include dissolved oxygen, specific conductance, pH, and temperature. These parameters were used to assess the water quality conditions at the time of sampling. All measurement results were within acceptable limits per Alabama's water quality criteria (ADEM 2014).

3.2 Surface Water Results

All stations sampled in Village Creek show levels of dieldrin detectable above the reporting limit of 0.0001 μ g/L (0.1 ng/L; Table 3). The sample at station VIL1, along with the field duplicate collected at that site, had the highest concentrations of dieldrin, which averaged 0.0014 μ g/L (1.4

ng/L). Sample VIL3 contained the lowest concentration at 0.00096 μ g/L (0.96 ng/L). Each of the four samples contained dieldren at levels above the ambient water quality criterion for protection of human health of 0.00003 μ g/L (0.03 ng/L). Furthermore, these concentrations are likely biased low, since analyte recoveries were less than method control limits. This indicates that the existing concentrations in Village Creek may be slightly higher than the results of this study.

The results from the 2000-2001 USGS study along with the results of this study are presented in Table 4. However, a true comparison cannot be made due to different sample processing methods. USGS analyzed the dissolved fraction by filtering samples with a 0.7- μ m pore size glass-fiber filter (Zaugg et al. 1995) whereas EPA analyzed the total fraction of the sample.

3.3 Quality Control

Quality control activities for this project included a bottle blank, temperature blank and field duplicate. No dieldrin was detected in the bottle blank. The field duplicate and its associated sample had a 14.3% relative percent difference, which is within the acceptable limit of 20%. The temperature blank indicated that samples arrived at the laboratory at 1.4°C which is below the acceptable maximum temperature of 6° C. Sample custody was maintained at all times and delivered to the SESD sample custodian. All samples arrived in good condition with correct chain-of-custody (USEPA 2013c).

Water quality instruments used during this study were maintained and calibrated according to requirements of the SESD Operating Procedure for Equipment Inventory and Management (USEPA 2013a) and the SESD Operating Procedure for *In Situ* Water Quality Monitoring (USEPA 2013b). At the end of the sampling event, instruments were end-checked using the appropriate standard for each parameter measured. End check results indicated all instrument measurements were within acceptable limits. Field measurement data has associated uncertainties assigned to each measurement based on instrument type. Field instrument uncertainty for field measurements can be found in Table 5: Measurement Uncertainty (USEPA 2012a).

4 Conclusion

Concentrations of dieldrin measured in Village Creek samples exceeded the human health criterion for surface waters in Alabama. WPD is responsible for any decisions regarding Village Creek based on the data provided in this report.

5 References

ADEM 2014. Alabama Department of Environmental Management Administrative Code 335-6-10.09, April 1, 2014.

- Griffith, G.E., J.M. Omernik, J.A. Comstock, S. Lawrence, G. Martin, A. Goddard, V.J. Hulcher and T. Foster. 2001. Ecoregions of Alabama and Georgia, (color poster with map, descriptive text, summary tables, and photographs): Reston, Virginia, U.S. Geological Survey (map scale 1:1,700,000).
- McPherson, A.K., T.A. Abrahamsen and C.A. Journey. 2002. Investigation of Water Quality and Aquatic-Community Structure in Village and Valley Creeks, City of Birmingham, Jefferson County, Alabama, 2000-01. U.S. Geological Survey.
- USEPA 2011a. Aldrin/Dieldrin website at http://www.epa.gov/pbt/pubs/aldrin.htm. April 2011.
- USEPA 2011b. Operating Procedure for Global Position System SESDPROC-110-R3, Region 4, SESD, Athens, GA.
- USEPA 2012a. Operating Procedure for Field Measurement Uncertainty, SESDPROC-014-R1, Region 4 SESD, Athens, GA.
- USEPA 2012b. Operating Procedure for Hydrological Studies, SESDPROC-501-R3, Region 4, SESD, Athens, GA.
- USEPA 2013a. Operating Procedure for Equipment Inventory and management, SESDPROC-108-R4, Region 4, SESD, Athens, GA.
- USEPA 2013b. Operating Procedure for *In Situ* Water Quality Monitoring, SESDPROC-111-R3, Region 4, SESD, Athens, GA.
- USEPA 2013c. Operating Procedure for Sample and Evidence Management, SESDPROC-005-R2, Region 4 SESD, Athens, GA.
- USEPA 2013d. Operating Procedure for Surface Water Sampling SESDPROC-201-R3, Region 4, SESD, Athens, GA.
- USEPA 2015a. SESD Analytical Services Branch Laboratory Operations and Quality Assurance Manual (ASB LOQAM), February 23, 2015. United States Environmental Protection Agency. Region 4, SESD, Athens, GA.
- USEPA 2015b. Village Creek Dieldrin Screening Quality Assurance Project Plan and Sample Plan, SESD Project Identification Number 15-0308, June 2015. United States Environmental Protection Agency. Region 4, SESD, Athens, GA.
- Zaugg, S.D., M.W. Sandstrom, S.G. Smith and K.M. Fehlberg, 1995, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory — Determination of pesticides in water by C-18 solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring: U.S. Geological Survey Open-File Report 95-181, 49 p.

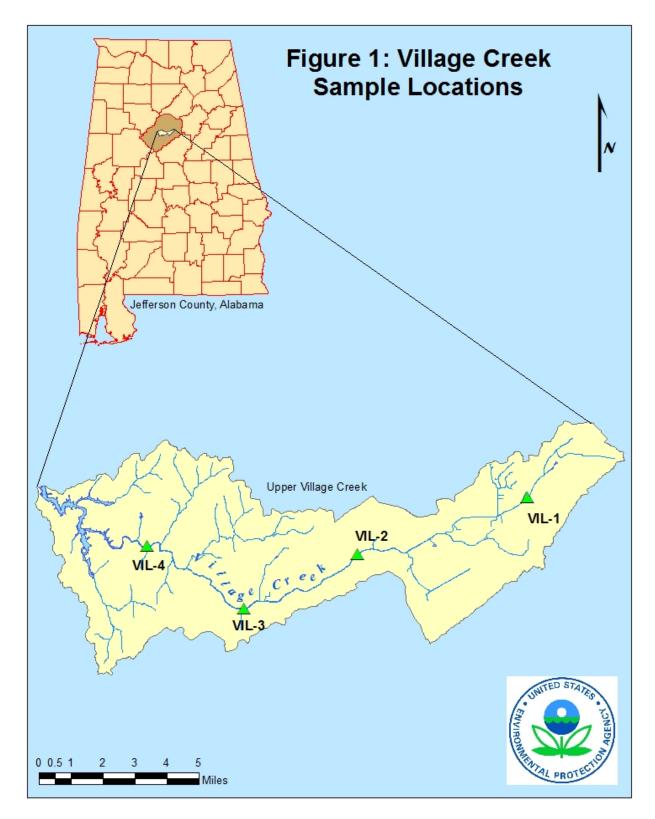


Figure 1: Village Creek Sample Locations

Station	USGS station number	Station location	Latitude	Longitude	Drainage area (mi ²)
VIL1	2458150	Village Creek at Eastlake Park in Birmingham	33.5681	-86.7252	4.9
VIL2 2458300 VIL3 2458450		Village Creek at 24 th Street at Birmingham	33.5429	-86.8173	26.0
		Village Creek at Avenue W at Ensley	33.5177	-86.8796	33.5
VIL4	2458600	Village Creek near Docena	33.5481	-86.9272	52.2

Table 1: Sample Locations

Table 2: In situ water quality, with ADEM Water Quality Criteria (WQC) listed for comparison.

Station	Temp (°C)	Sp. Cond. (µS/cm)	pH (S.U.)	Dissolved Oxygen (mg/L)	*Discharge (ft ^{3/} s)			
ADEM WQC	<32.2 (90°F)	NA	6.5-8.5	>5.0	NA			
VIL1	21.68	390.6	8.07	8.38	6.9			
VIL2	22.36	380.9	8.21	9.16	21			
VIL3	25.40	404.5	8.30	10.95	37			
VIL4 22.98		456.0	7.67	7.57	103			
*Discharge data acquired from http://waterdata.usgs.gov for the following stations: VIL2, VIL3 and VIL4 (USGS station numbers 02458300, 02458450, and 02458600 respectively).								

Station	Sample	Analytical Method	Analyte	HHC (µg/L)	Results (µg/L)	Qualifiers	MRL (µg/L)
		EPA		(µ8/2)	(#8,2)	J, QS-3,	(#8/2)
VIL1	VIL10615	8270D	Dieldrin	0.00003	0.00130	QR-1, QL-1	0.000098
		EPA				J, QS-3,	
VIL1	VIL0615D	8270D	Dieldrin	0.00003	0.00150	QR-1, QL-1	0.000098
		EPA				J, QR-1,	
VIL2	VIL20615	8270D	Dieldrin	0.00003	0.00120	QL-1	0.000100
		EPA				J, QL-1,	
VIL3	VIL30615	8270D	Dieldrin	0.00003	0.00096	QR-1	0.000099
		EPA				J, QS-3,	
VIL4	VIL40615	8270D	Dieldrin	0.00003	0.00130	QR-1, QL-1	0.000098

HHC: Human health criterion for the consumption of water and fish. **Bold** values represent exceedances. J: The identification of the analyte is acceptable; the reported value is an estimate.

QL-1: Laboratory Control Spike Recovery less than method control limits.

QR-1: MRL verification recovery less than lower control limits.

QS-3: Surrogate recovery is lower than established control limits.

Station	Sample Date	Agency	Analyte	Result (ng/L)	MRL (ng/L)	Method ^{1,2}	Discharge (cfs)
VIL1	5/17/2000	USGS	Dieldrin (filtered)	<1.00	1.000	GC/MS	3.9
VIL1	8/1/2000	USGS	Dieldrin (filtered)	4.69	1.000	GC/MS	2.5
VIL1	8/30/2000	USGS	Dieldrin (filtered)	<1.00	1.000	GC/MS	1.3
VIL1	11/8/2000	USGS	Dieldrin (filtered)	<4.80	4.800	GC/MS	126
VIL1	1/29/2001	USGS	Dieldrin (filtered)	<4.80	4.800	GC/MS	101
VIL1	3/19/2001	USGS	Dieldrin (filtered)	4.98	4.800	GC/MS	7.0
VIL1 ³	5/9/2001	USGS	Dieldrin (filtered)	7.00	4.800	GC/MS	8.3 ⁴
VIL1	6/3/2015	USEPA	Dieldrin (unfiltered)	1.30	0.098	EPA 8270D	4.9
VIL1 ⁵	6/3/2015	USEPA	Dieldrin (unfiltered)	1.50	0.098	EPA 8270D	4.9
VIL2	8/1/2000	USGS	Dieldrin (filtered)	<1.00	1.000	GC/MS	27.9
VIL2	8/30/2000	USGS	Dieldrin (filtered)	<1.00	1.000	GC/MS	10.5
VIL2	1/29/2001	USGS	Dieldrin (filtered)	<4.80	4.800	GC/MS	911
VIL2	6/3/2015	USEPA	Dieldrin (unfiltered)	1.20	0.100	EPA 8270D	26.0
VIL3	3/30/2000	USGS	Dieldrin (filtered)	<1.00	1.000	GC/MS	410
VIL3	8/2/2000	USGS	Dieldrin (filtered)	<1.00	1.000	GC/MS	413
VIL3	8/29/2000	USGS	Dieldrin (filtered)	<1.00	1.000	GC/MS	14.6
VIL3	6/3/2015	USEPA	Dieldrin (unfiltered)	0.96	0.099	EPA 8270D	37
VIL4	4/2/2000	USGS	Dieldrin (filtered)	< 5.00	5.000	GC/MS	2440
VIL4	6/3/2015	USEPA	Dieldrin (unfiltered)	1.30	0.098	EPA 8270D	103

Table 4: Comparison of 2000-2001 USGS data to 2015 USEPA data [reported in nanograms per liter (ng/L)]

¹GC/MS: C-18 Solid-Phase Extraction and Capillary-Column Gas Chromatography/Mass Spectrometry with Selected-Ion Monitoring (Zaugg et al. 1995)

²EPA Method 8270D: Gas Chromatograph/Mass Spectrophotometer/Mass Spectrophotometer modified for Select-Ion Monitoring ³Data retrieved from <u>http://nwis.waterdata.usgs.gov</u>

⁴Daily average for 5/9/2001 per <u>http://waterdata.usgs.gov</u> ³VIL1 duplicate field sample

Results in **bold** represent exceedances of the human health criterion of **0.03 ng/L** for the consumption of water and fish and the consumption of fish only.

Type B Field Measurement Uncertainty							
Instrument/Measurement Measurement Uncertainty							
pH ¹	± 0.2 S.U.						
Specific Conductance ¹	$\pm 0.5\%$						
Temperature ¹	±0.2°C						
Dissolved Oxygen ¹	\pm 2% or 0.2 mg/l (whichever is greater)						
¹ YSI, Inc. 2002. 6-Series Environmental Monitori OH.	¹ YSI, Inc. 2002. 6-Series Environmental Monitoring Systems Operations Manual. Revision B. Yellow Springs,						

Station Photographs

VIL1: Facing upstream.

VIL2: Facing upstream.

VIL3: Facing upstream.

VIL4: Facing upstream.

Appendix A (Analytical Reports)

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 15-0308 Project: 15-0308, Village Creek Dieldrin - Reported by Jason Collum

July 9, 2015

4SESD-ASB

MEMORANDUM

SUBJECT:	FINAL Analytical Report
	Project: 15-0308, Village Creek Dieldrin
	Surface Water Protection
FROM:	Jason Collum OCS Analyst
THRU:	Floyd Wellborn, Chief ASB Organic Chemistry Section
TO:	Jerry Ackerman

Attached are the final results for the analytical groups listed below. These analyses were performed in accordance with the Analytical Support Branch's (ASB) Laboratory Operations and Quality Assurance Manual (ASB LOQAM) found at www.epa.gov/region4/sesd/asbsop. Any unique project data quality objectives specified in writing by the data requestor have also been incorporated into the data unless otherwise noted in the Report Narrative. Chemistry data have been verified based on the ASB LOQAM specifications and have been qualified by this laboratory if the applicable quality control criteria were not met. Verification is defined in Section 5.2 of the ASB LOQAM. For a listing of specific data qualifiers and explanations, please refer to the Data Qualifier Definitions included in this report. The reported results are accurate within the limits of the method(s) and are representative only of the samples as received by the laboratory.

Analyses Included in this report:	Method Used:	Accreditations:
Organochlorine Pesticides (OCP)		
Organochlorine pesticides	EPA 8270D (Water)	NR

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 15-0308 Project: 15-0308, Village Creek Dieldrin - Reported by Jason Collum

Sample Disposal Policy

Because of the laboratory's limited space for long term sample storage, our policy is to dispose of samples on a periodic schedule. Please note that within 60 days of this memo, the original samples and all sample extracts and/or sample digestates will be disposed of in accordance with applicable regulations. The 60-day sample disposal policy does not apply to criminal samples which are held until the laboratory is notified by the criminal investigators that case development and litigation are complete.

These samples may be held in the laboratory's custody for a longer period of time if you have a special project need. If you wish for the laboratory to hold samples beyond the 60-day period, please contact our Sample Control Coordinator by e-mail at <u>R4SampleCustody@epa.gov</u>, and provide a reason for holding samples beyond 60 days

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 15-0308 Project: 15-0308, Village Creek Dieldrin - Reported by Jason Collum

SAMPLES INCLUDED IN THIS REPORT

Sample ID	Laboratory ID	Matrix	Date Collected	Date Received
QABB	E152305-01	Bottle Blank	6/4/15 13:00	6/4/15 14:23
VIL10615	E152305-02	Surface Water	6/3/15 15:00	6/4/15 14:23
VIL10615D	E152305-03	Surface Water	6/3/15 15:00	6/4/15 14:23
VIL20615	E152305-04	Surface Water	6/3/15 14:30	6/4/15 14:23
VIL30615	E152305-05	Surface Water	6/3/15 14:00	6/4/15 14:23
VIL40615	E152305-06	Surface Water	6/3/15 13:30	6/4/15 14:23

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 15-0308 Project: 15-0308, Village Creek Dieldrin - Reported by Jason Collum

DATA QUALIFIER DEFINITIONS

- U The analyte was not detected at or above the reporting limit.
- J The identification of the analyte is acceptable; the reported value is an estimate.
- OL-1 Laboratory Control Spike Recovery less than method control limits
- OR-1 MRL verification recovery less than lower control limits.
- OS-3 Surrogate recovery is lower than established control limits.

ACRONYMS AND ABBREVIATIONS

CAS Chemical Abstracts Service

Note: Analytes with no known CAS identifiers have been assigned codes beginning with "E", the EPA ID as assigned by the EPA Substance Registry System (www.epa.gov/srs), or beginning with "R4-", a unique identifier assigned by the EPA Region 4 laboratory.

- MDL Method Detection Limit The minimum concentration of a substance (an analyte) that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero.
- MRL Minimum Reporting Limit Analyte concentration that corresponds to the lowest demonstrated level of acceptable quantitation. The MRL is sample-specific and accounts for preparation weights and volumes, dilutions, and moisture content of soil/sediments.
- TIC Tentatively Identified Compound An analyte identified based on a match with the instrument software's mass spectral library. A calibration standard has not been analyzed to confirm the compound's identification or the estimated concentration reported.

ACCREDITATIONS:

- ISO The test, if analyzed after June 26, 2012, is accredited under the EPA Region 4 ASB's ISO/IEC 17025 accreditation issued by ANSI-ASQ National Accreditation Board/ACLASS. Refer to certificate and scope of accreditation AT-1691.
- NR The EPA Region 4 Laboratory has not requested accreditation for this test.

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 15-0308 Project: 15-0308, Village Creek Dieldrin - Reported by Jason Collum

Organochlorine Pesticides

Sample ID: <u>QABB</u> Station ID:			E152305-01 Bottle Blank				
Date Coll CAS Number	lected: 6/4/15 13:00	Results Qualif	iers Units	MRL	Prepared	Analyzed	Method
60-57-1	Dieldrin	0.00010 U, J, Q QL-1	PR-1, ug/L	0.00010	6/09/15 9:46	7/09/15 4:18	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 15-0308 Project: 15-0308, Village Creek Dieldrin - Reported by Jason Collum

Organochlorine Pesticides

Sample II Station II	D: <u>VIL10615</u> D: <u>VIL1</u>	Lab ID: <u>E15230</u> Matrix: Surface W					
Date Col CAS Number	llected: 6/3/15 15:00 <i>Analyte</i>	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
60-57-1	Dieldrin	0.0013 J, QS-3, QR-1, QL-1	ug/L	9.8E-5	6/09/15 9:46	7/09/15 4:36	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 15-0308 Project: 15-0308, Village Creek Dieldrin - Reported by Jason Collum

Organochlorine Pesticides

Sample ID Station ID	: <u>VIL10615D</u> : <u>VIL1</u>		<u>E152305-03</u> Surface Water				
Date Coll CAS Number	ected: 6/3/15 15:00 <i>Analyte</i>	Results Qualif	iers Units	MRL	Prepared	Analyzed	Method
60-57-1	Dieldrin	0.0015 J, QS- QL-1	3, QR-1, ug/L	9.8E-5	6/09/15 9:46	7/09/15 4:53	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 15-0308 Project: 15-0308, Village Creek Dieldrin - Reported by Jason Collum

Organochlorine Pesticides

Sample ID:	<u>VIL20615</u>	Lab ID: <u>E152305</u>	-04				
Station ID: <u>VIL2</u>		Matrix: Surface Wa	ter				
Date Colle	ected: 6/3/15 14:30						
CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
60-57-1	Dieldrin	0.0012 J, QR-1, QL-1	ug/L	0.00010	6/09/15 9:46	7/09/15 5:11	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 15-0308 Project: 15-0308, Village Creek Dieldrin - Reported by Jason Collum

Organochlorine Pesticides

Sample ID	: <u>VIL30615</u>	Lab ID:	E152305-05				
Station ID: <u>VIL3</u>		Matrix:	Matrix: Surface Water				
Date Coll	ected: 6/3/15 14:00						
CAS Number	Analyte	Results Qualific	ers Units	MRL	Prepared	Analyzed	Method
60-57-1	Dieldrin	0.00096 J, QL-1	, QR-1 ug/L	9.9E-5	6/09/15 9:46	7/09/15 5:29	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 15-0308 Project: 15-0308, Village Creek Dieldrin - Reported by Jason Collum

Organochlorine Pesticides

Sample II Station II	D: <u>VIL40615</u> D: <u>VIL4</u>						
Date Col CAS Number	lected: 6/3/15 13:30 <i>Analyte</i>	Results Qualifi	ers Units	MRL	Prepared	Analyzed	Method
60-57-1	Dieldrin	0.0013 J, QS-3 QL-1	, QR-1, ug/L	9.8E-5	6/09/15 9:46	7/09/15 5:47	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 15-0308 Project: 15-0308, Village Creek Dieldrin - Reported by Jason Collum

Organochlorine Pesticides (OCP) - Quality Control

US-EPA, Region 4, SESD

		00 2111	.,	л ч, <u>бы</u> би					
Analyte	Result	Reporting Limit	Units	Spike Source Level Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1506037 - E 3520 LLE									
Blank (1506037-BLK1)				Prepared: 06/09/15 A	nalyzed: 0	7/09/15			
EPA 8270D									
Surrogate: Decachlorobiphenyl (DCB)	0.00438		ug/L	0.010000	43.8	39.7-108			
Surrogate: Tetrachloro-meta-xylene	0.00246		"	0.0050000	49.1	41-86.2			
Dieldrin	U	0.00010	"						U
LCS (1506037-BS1)				Prepared: 06/09/15 A	analyzed: 0	7/09/15			
EPA 8270D									
Surrogate: Decachlorobiphenyl (DCB)	0.00431		ug/L	0.010000	43.1	39.7-108			QI-1
Surrogate: Tetrachloro-meta-xylene	0.00171		"	0.0050000	34.1	41-86.2			QS-3
Dieldrin	0.00039044	0.00010	"	0.0010000	39.0	46.5-140			QI-1, QL-1
Matrix Spike (1506037-MS1)	Sou	rce: E152305-	05	Prepared: 06/09/15 A	nalwząd: 0	7/00/15			
EPA 8270D	500	ICC. E132505-	0.5	11cpared: 00/09/15 7	maryzeu. 0	//09/15			
Surrogate: Decachlorobiphenyl (DCB)	0.00338		ug/L	0.010582	31.9	39.7-108			QS-3
Surrogate: Tetrachloro-meta-xylene	0.00239		ug/L "	0.0052910	45.1	41-86.2			Q3-3
Dieldrin	0.0013627	0.00011	"	0.0010582 0.0009587		17.4-155			
Matrix Spike Dup (1506037-MSD1)	Sou	rce: E152305-	05	Prepared: 06/09/15 /	analyzed: 0	7/09/15			
EPA 8270D									
Surrogate: Decachlorobiphenyl (DCB)	0.00315		ug/L	0.010363	30.4	39.7-108			QS-3
Surrogate: Tetrachloro-meta-xylene	0.00239		"	0.0051813	46.2	41-86.2			~
Dieldrin	0.0012465	0.00010	"	0.0010363 0.0009587) 27.8	17.4-155	8.90	22.8	
MRL Verification (1506037-PS1)				Prepared: 06/09/15 A	nalyzed: 0	7/09/15			
EPA 8270D									
Surrogate: Decachlorobiphenyl (DCB)	0.00345		ug/L	0.010000	34.5	39.7-108			QS-3
Surrogate: Tetrachloro-meta-xylene	0.00236		"	0.0050000	47.1	41-86.2			
Dieldrin	0.000095517	0.0	"	0.00020000	47.8	58.2-152			MRL-2, QR-1

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 15-0308 Project: 15-0308, Village Creek Dieldrin - Reported by Jason Collum

Notes and Definitions for QC Samples

- U The analyte was not detected at or above the reporting limit.
- MRL-2 MRL verification for Non-Potable Water matrix
- QI-1 Internal standard was outside of method control limits.
- QL-1 Laboratory Control Spike Recovery less than method control limits
- QR-1 MRL verification recovery less than lower control limits.
- QS-3 Surrogate recovery is lower than established control limits.

Appendix B (Field Logbook)

United States Environmental Protection Agency Region 4 Science and Ecosystem Support Division 980 College Station Road Athens, Georgia 30605-2720

PROJECT NAME: Village Creek Dieldrin Screening

PROJECT LOCATION: Village Creek, Birmingham, Jefferson County, AL

> PROJECT ID NUMBER: 15-0308 **PROJECT LEADER:** Jerry Ackerman

Field and Calibration Logbook

Book _/_ of _/_ Inclusive Dates: 6/3/15

List of personnel in logbook:

Name	Initials	Duties	Organization
Jorry Ackerman	JWA	Tenn Leader, Sampler	EPA SESD
Susan Dye	50	Losbook	ETA SESD
' <u></u>			
	8		

SESD Project ID 15-0308 SESD Project ID: 15-0308

•

1

Village Creek Dieldrin Screening Final Report

Page 1 of 16 Page 27 of 43

Unless otherwise indicated:

- All surface water samples will be collected in accordance with the SESD Operating Procedure Surface Water Sampling SESDPROC-201-R3.
- All GPS positioning data will be collected in accordance with SESD Operating Procedure Global Positioning System SESDPROC-110-R3.
- All datasonde calibration and measurements will be conducted in accordance with SESD Operating Procedure *In Situ* Water Quality Monitoring SESDPROC-111-R3.
- All field logbooks will be completed and maintained in accordance with SESD Operating Procedure Logbooks SESDPROC-010-R5.
- All digital photos will be taken in accordance with SESD Operating Procedur e for Sample and Evidence Management SESDPROC-005-R2.
- All flow measurements will be collected in accordance with SESD Operating Procedure for Hydrological Studies SESDPROC-501-R3.

Equipment log:

Date(s)	Equipment	Type/Model #	EPA ID# or Serial Number
6/3/15	Multi-meter	In Sita Some Trall	549609
13/15	Flow meter	Soutek FlowTranker	102411-01
6/3/15	Camera	Nikon Coolpix AW110	5 49543
6/3/15	GPS unit	Garmin Monterra	549607

Sample Information:

ĺ	Media	Analysis	Container Type and Number	Preservative	Sample Method
	Surface Water (SW)	Pesticides (dieldrin)	1 liter glass amber x 2	lce	Direct fill unless otherwise noted

Quality Assurance/Quality Control (QA/QC) associated with samples:

QA/QC Type	Abbreviation	Frequency	Container Type and Number
Matrix Spike/Matrix Spike Duplicate	MS/MSD	1 per 20 samples	1 liter glass amber x 2
Duplicate	D	1 per 10 samples	1 liter glass amber x 2
Temperature Blank	Not applicable	1 per sample cooler	250 ml glass or poly

Activities to conduct at each station:

- Collect surface water samples in thalweg at mid-depth (determined by best professional judgment).
- Collect flow data within sample reach.
- Collect in situ water quality measurements within sample reach.
- Record GPS coordinates at sampling location.
- Take photographs facing upstream and downstream from sample reach.

Team Leader Initials:

.

Multi-meter Calibration

Calibration Standards Information

Conductivity Manufacturer: Myron L	Lot #:	080140EB	Exp. Date:	8/14/15
pH 4 Std. Manufacturer: Fisher	Lot #:	133082	Exp. Date:	06/2015
pH 7 Std. Manufacturer: Fisher	Lot #:	133435	Exp. Date:	06/2015
pH 10 Std. Manufacturer: Fisher	Lot #:	133404	Exp. Date:	06/2015
NIST Thermometer: Fisher	SESD ID #:	05062013-01	Exp. Date:	3/6/2016

Data sonde mid-day calibration checks (if necessary)

Checked by_ Date/Time Sonde ID U Within U Within U Within U Within Battery (V) D Outside 🗆 Outside Outside Sp. Conductivity U Within D Within U Within D Within 12,500 µs/cm Outside Outside U Within U Within U Within U Within pH 7 🗆 Outside Outside Within U Within U Within D Within pH 4 Outside Outside U Within D Within u Within U Within pH 10 🗆 Outside U Within D Within D Within D Within **Turbidity 0 NTU** Outside Outside Outside Temperature °C **Barometric Pressure** (mmHg) **Chart Value Dissolved** Oxygen Within D Within D Within U Within mg/L D Outside Outside Acceptable ranges Additional Notes: Jul 5/15 Sp. Cond: +/- 5% of 12,500 µs/cm = 625 µs/cm pH: +/- 0.2 SU DO mg/L: +/- 0.2 mg/L Turbidity: +/- 10% of 126 NTU = 12.6 NTU Battery: > 10.5 v

Team Leader Initials: JwA

Data Sonde Calibra	tion Form	n Insitu	Smatroll	Sonde#	578645	
			()			
Date and Time			43/15c1235			
	and the second se	(A) (A)	6/3/150 1615			
12 Combustances 12 500		12530	12535			
ipecific Conductance 12,500 (μs/cm)	PostCal	12500	12489		+	
	End Check	12535	1.2594			
Temp (°C) Verification	Begin	21,7/21,5	26.7/26.4	$ \rightarrow $		
NIST/Thermistor	End	26.7/26.4	28.0/27.56			
	PreCal	6.93	7.07		<u> </u>	
pH 7	PostCal	7.02	6.99			
	End Check	7.07	7,07			
	PreCal	3.91	4.11		+	
pH 4	PostCal	4.02	3.99		\rightarrow	
	End Check	4.11	4,07	ļ		
	PreCal	9.98	10.03			
pH 10	PostCal	10.02	10.00			10 6/5/15
	End Check	10.03	10,13			
Barometric Pressure (mmHg)	Begin	745021.5	7480 27.8			
and Temperature (°C) for DO	End	748C	7430 26.4			1
	PreCal	8.67	7,76			
	PostCal	8.61	7.72	1751		
Dissolved Oxygen (mg/L)	Chart Value	9.60	7.73			
(Compare to Chart)	End Check	7.76	7.83			
	Chart Value	7.73	7.87			
	PreCal	100.3	100.5	- Tuber		\rightarrow
Dissolved Oxygen %	PostCal	100.1	100.0			
	End Check	100.0	99.7		1 - 1	
Depth (ft)	PreCal	-0.01	-0.04			
	PostCal	0.02	0.01			
	End Check		0.07			
	Begin	Just	JW			
Operator	End	JWA	Turt			

Team Leader Initials: <u>JwA</u>

8

l

I

ł

1

1

Data Sonde Calibr	ation For	m		Sonde#		
	Begin					
Date and Time	End					
	PreCal			The second second second is the second		
Specific Conductance 12,500 (µs/cm)	PostCal					=
(bulk curit)	End Check					
Temp (°C) Verification	Begin					
NIST/Thermistor	End					
[1] · · · · · · · · · · · · · · · · · · ·	Precal				Inter I	1
pH 7	PostCal				W1	
	End Check			a :: : : : : : :	Charges I	
	PreCal	/			n, inder s	
pH 4	PostCal		6. I.	ELK.	- 2	
- Charlesterichen	End Check					
	PreCal		K			
pH 10	PostCal		2 mm	<u>u</u>		1.152
the law of the later to	End Check		61rhs	10 10 10	S	
Barometric Pressure (mmHg)	Begin					
and Temperature (°C) for DO	End	In the work				
	PreCal			1.11 (19.16)		00144
	PostCal					
Dissolved Oxygen (mg/L) (Compare to Chart)	Chart Value	1/41 E				1.44
	End Check					
	Chart Value					
	PreCal					1
Dissolved Oxygen %	PostCal					
	End Check					
	PreCal					
Depth (ft)	PostCal					4
	End Check					
Operator	Begin					
oheteret	End					

F

E

ľ

R

ł

1

I

R

ſ

Village Creek Dieldrin Screening Final Report Team Leader Initials:JwfPage 5 of 16Page 31 of 43

Station ID: VIL4

Date: 6/3/15

. 8

-

10

(c)

ø

8

n

ħ,

n

0

11

E.

Ī

15

Ē

Ē.

E.

10

Ű.

10

Location Description: ~ 100 yards downstream of Minor Partenay

Description	Latitude (DD)	Longitude (DD)	Accuracy (ft)	Initials
Sample location	33.54812	-84.92724	17	Jult

Photograph Log	Date and time is imprinted on photo.	
Photo #	Location	Initials
1279	Description: Descr	4
1280	Description: facing upstream facing downstream other:	Jult
	Description: facing upstream facing downstream other:	

AD NA) Collected by In-situ Water Quality (File Name____ pH (S.I. units) Time Temp (°C) Sp. cond (µS/cm) **Turbidity (NTU)** DO (mg/l) Depth (ft) 22.98 19:27 456.0 7.67 NA 7.57 0.71

Sample Collection/Preservation (see page 2 for preservatives and sample containers) Collected by Juff

Sample ID	Sample Time	Media code	Pesticides (dieldrin)	Number of containers	Sample method
VIL4 -0615	13=30	SW	×	2	grab/direct fill
D-0615		SW	- <u> </u>	L	

Surface water sample description: Clear Slightly Turbid Outrbid Odor Present Other____

Sample Preservation: 🖄 Ice Ice status: 🖄 adequate 🗆 needs ice 🗆 added ice Duplicate 🗆 MS/MSD 🗆

* USGS gauging station at this location.

6/3/15 70

Dist (ft)	Depth (ft)	Method	V (fps)	Dist (ft)	Depth (ft)	Method	V (fps)	Dist (ft)	Depth (ft)	Method	V (fps
					=		_				
	-	_						_			
_				-/					-		
-				\leq							
	_							_			
							_	-			
											-
									-		
				1							
	- 12			-							
		5 II						Tot. V	Nidth (ft)		
				1				Tota	l Q (cfs)	103	

See page <u>12</u> for additional notes.

Team Leader Initials: ______

Station ID: ____ノレ3

Date: 6/3/15

100 ft downstram bridge at Avenue W at Ensley **Location Description:** Adverse Conditions (if applicable):
Rain Wind Smoke Dust Temp. Extremes Other Station observations: D Industrial & Commercial D Residential D Agricultural Other_

Description	Latitude (DD)	Longitude (DD)	Accuracy (ft)	Initials
Sample location	33.51773	-86.87955	13	July

Photograph Log	Date and time is imprinted on photo.

Photo #	Location	Initials
1281	Description: Kfacing upstream facing downstream other:	
1282	Description: □ facing upstream ▲ facing downstream □ other:	Jut
	Description: facing upstream facing downstream other:	

H) In-situ Water Quality (File Name_ NA) Collected by Time Temp (°C) | Sp. cond (µS/cm) pH (S.I. units) **Turbidity (NTU)** DO (mg/l) Depth (ft) 13:58 25.40 404.5 0.56 8.30 10.95 NA

Sample Collection/Preservation (see page 2 for preservatives and sample containers) Collected by Juff

Sample ID	Sample Time	Media code	Pesticides (dieldrin)	Number of containers	Sample method
VIL3 -0615	14:00	SW	×	4	gray/direct fil
D-0615	14-00	SW			4 1 1 1 1 1 1
Surface water sam	ole description	n: XClear	Slightly Turb	id □Turbid □Odor	Present DOther

Sample Preservation: Alce Ice status: Adequate Dneeds ice Dadded ice Duplicate D MS/MSD

* USGS gauging station at this location.

tream	Flow (Fi	le name) Mea	_) Measurements by (g \$1, X ⁺²		G SI XI				
Dist (ft)	Depth (ft)	Method	V (fps)	Dist (ft)	Depth (ft)	Method	V (fps)	Dist (ft)	Depth (ft)	Method	V (fps
_				-							ļ
				-							
								-			
				/						<u></u>	
			12								
				-							
-		/									
	~								_		
								Tot. V	Vidth (ft)		I
/									I Q (cfs)	37	

See page $\frac{12}{12}$ for additional notes.

Team Leader Initials:

112/15-40

Station ID: VILZ

Date: 6/3/15

Location Description: upstream of bridge at 24th Street Adverse Conditions (if applicable): D Rain DWind DSmoke Dust DTemp. Extremes DOther_

Adverse Conditions (if applicable):
Rain
Wind
Smoke
Dust
Temp. Extremes
Other______
Station observations:
Industrial
Commercial Residential
Agricultural
Other______

Description	Latitude (DD)	Longitude (DD)	Accuracy (ft)	Initials -
Sample location	33.54287	-86 81729	22	Just

Photograph Log Date and time is imprinted on photo.

Photo #	Location	Initials
283	Description: A facing upstream 🛛 facing downstream 🗆 other:	
1284	Description: facing upstream facing downstream other:	JME
	Description: facing upstream facing downstream other:	

 In-situ Water Quality (File Name______) Collected by _A

 Time
 Temp (°C)
 Sp. cond (μS/cm)
 pH (S.I. units)
 Turbidity (NTU)
 DO (mg/l)
 Depth (ft)

 14-28
 22.36
 380,9
 8.21
 NA
 9.16
 1.45

Sample Collection/Preservation (see page 2 for preservatives and sample containers) Collected by Trak

Sample ID	Sample Time	Media code	Pesticides (dieldrin)	Number of containers	Sample method
VIL2 -0615	14:30	SW	×	2	grab direct fill
D-0615		SW			1000

Sample Preservation: 💢 Ice Ice status: 🖉 adequate 🗆 needs ice 🗆 added ice Duplicate 🗆 MS/MSD 🗖

* USGS gauging station at this location.

Stream	Flow (Fi	lé name) Mea	suremer	its by					
Dist (ft)	Depth (ft)	Method	V (fps)	Dist (ft)	Depth (ft)	Method	(fps)	Dist (ft)	Depth (ft)	Method	V (fps)
	12 C			1110							-
		=						13			
				100							_
			1							—	-
	1							100			
1		Ξ			=	=	=			=	
1	1									-	
-							=				
	/			100							
					1						-
						= s =		Tot. V	Nidth (ft)		
									I Q (cfs)	21	

See page <u>17</u> for additional notes.

Team Leader Initials: _____A

13/15 AN

Station ID: VIL1

Date: 6/3/15

Location Description: upstraum of spillnay from East-Lake @ old USGS gauge Adverse Conditions (if applicable): Bain Wind Smoke Dust Demp. Extremes DOther______ Station observations: Bladustrial - Commercial - Paristerial Station observations:

Industrial
Commercial
Residential
Agricultural
Other part
N/ reservest

Description	Latitude (DD)	Longitude (DD)	Accuracy (ft)	Initials
Sample location	33.56809	-86.72519	15	Juff

Photograph Log Date and time is imprinted on photo.

Photo #	Location	Initials
1285	Description: A facing upstream 🗆 facing downstream 💷 other:	
1286	Description: □ facing upstream ≤ facing downstream □ other:	JNA
	Description: facing upstream facing downstream other:	

In-situ Water	r Quality (File	Name MA	_) Collected by _	XIN		-
Time	Temp (°C)	Sp. cond (µS/cm)	pH (S.I. units)	Turbidity (NTU)	DO (mg/l)	Depth (ft)
15:06	21.68	390.6	8.07	NA	- 8.38	-0.75

Sample Collection/Preservation (see page 2 for preservatives and sample containers) Collected by Jul

Sample ID	Sample Time	Media code	Pesticides (dieldrin)	Number of containers	Sample method					
VIL1 -0615	15:00	SW	×	2	gras / direct fill					
VIL1 D-0615	19-00	SW	×	2	gras/direct fill					
Surface water sample description: Clear Slightly Turbid Turbid Odor Present Other										
Sample Preservation: 🗵 Ice Ice status: 🖄 adequate 🗆 needs ice 🗆 added ice Duplicate 🗶 MS/MSD 🗆										

	Stream	Flow (Fi	le name	VIL1	-	_) Mea	suremen	ts by 🖅 🛩	Mar and a state of the state of				
	Dist (ft)	Depth (ft)	Method	V (fps)		Dist (ft)	Depth (ft)	Method	V (fps)	Dist (ft)	Depth (ft)	Method	V (fps)
REW	6:2	0,95	0.60	0		17.3	1.65	0.60	0.22		=	-	
	6,4	0,95	Ϊ, –	0.15		18.3	1,65		0.26		_		
	6.9	1.00		0,22		19.3	1,65	= $=$	0.23				
	7.3	1,40		0.23		20.3	1.50		0.15				I
	8.3	1.50		0,28		21,3	1.40		0,07			THIN	
	9.3	1,40		0.33		22.3	1,00		0.05			W13/15	1
	10.3	1.60		0.35		23.3	0.80	V	0,03			-	
	11.3	1.55		0.44		23.6	0,55	LEW	0 -				
	12.3	1,50		0.45				*					
	133	1.65		0.35				×.					
	14.3	1,65		0.33				20,1212					
	15,3	1.65		0.29				~		Tot. \	Width (ft)	=17-4	
	16.3		$-\Psi$	0.27		(1997),				Tota	al Q (cfs)	6.88	3

See page

for additional notes.

Team Leader Initials: _____

SESD Project ID 15-0308 SESD Project ID: 15-0308 Village Creek Dieldrin Screening **Final Report**

Page 9 of 16 Page 35 of 43 Station ID: _____

Date: _____

Location Description: ____

Adverse Conditions (if applicable):
Rain
Wind
Smoke
Dust
Temp. Extremes
Other Station observations:
Industrial
Commercial
Residential
Agricultural
Other

Description	Latitude (DD)	Longitude (DD)	Accuracy (ft)	Initials
Sample location	28%.ust			
				10.

Photograph Log	Date and time is imprinted on photo.	
Photo #	Location	Initials
	Description: 🗆 facing upstream 🗇 facing downstream 🗆 other:	
	Description a facing upstream a facing downstream a other:	
	Description: Afacing upstream Defacing downstream Dether:	

In-situ Wa	ter Quality (File	Name	_) Collected by _			
Time	Temp (°C)	Sp. cond (µS/cm)	pH (S.I. units)	Turbidity (NTU)	DO (mg/l)	Depth (ft)
			10 1			-
			JUV JSIIS		<u>.</u>	

Sample Collection/Preservation (see page 2 for preservatives and sample containers) Collected by_

Sample ID	Sample Time	Media code	Pesticides (dieldrin)	Number of containers	Sample method
-0615		SW			
D-0615		sw			āja I
urface water samp	le description	: DClear	□Slightly Turb	id Turbid Od	or Present Other
ample Preservatio	n: 🗆 ice 🛛 ice	e status: t	adequate 🗆 n	eeds ice gadded	ice Duplicate MS/MSD

) Measurements by___

tream	Flow (Fi	le name) Mea	asuremen	nts by		\	1		
Dist (ft)	Depth (ft)	Method	V (fps)	Dist (ft)	Depth (ft)	Method	V (fps)	Dist (ft)	Depth (ft)	Method	V (fps)
				100	- L						<u> </u>
		_	1-1			24. 17			<u> </u>		
			- 420				=				
-			2.4								
				100	-						
_	1	-	1			_					
						-					
-								-		$\Box \setminus \Box$	=
								100			Ţ
					<u> </u>						Γ
-								100	10.		
125								Tot.	Width (ft)	<u> </u>	$\overline{}$
									al Q (cfs)		7

See page _____ for additional notes.

Team Leader Initials: _

Village Creek Dieldrin Screening **Final Report**

Page 10 of 16 Page 36 of 43 Station ID: _____

ł

Date:

Location Description:

Adverse Conditions (if applicable):
Rain
Wind
Smoke
Dust
Temp. Extremes
Other______
Station observations:
Industrial
Commercial
Residential
Agricultural
Other______

Description	Latitude (DD)	Longitude (DD)	Accuracy (ft)	Initials
Sample location	1. N. 1. N. 1. S.		1.5	

Photograph Log	Date and time is imprinted on photo.	
Photo #	Location	Initials
	Description: facing upstream facing downstream other:	
1	Description: facing upstream facing downstream other:	
	Description; facing upstream facing downstream other:	

In-situ Water Quality (File Name) Collected by								
Time	Temp (°C)	Sp. cond (µS/cm)	pH (S.I. units)	Turbidity (NTU)	DO (mg/l)	Depth (ft)		

Sample Collection/Preservation (see page 2 for preservatives and sample containers) Collected by

Sample ID	Sample Time	Media code	Pesticides (dieldrin)	Number of containers	Sample method			
-0615		SW						
D-0615		SW						
Surface water sample description: Clear Slightly Turbid Turbid Odor Present Other								

Sample Preservation:
Ice Ice status:
adequate
needs ice
added ice Duplicate
MS/MSD

Stream	Flow (Fi	le name			asuremer	nts by			2		
Dist (ft)	Depth (ft)	Method	V (fps)	Dist (ft)	Depth (ft)	Method	(fps)	Dist (ft)	Depth (ft)	Method	V (fps)
				1 C -							
								\mathbf{X}			
1											
									\backslash		
1											
											}
	<i>2</i>										
								Tot. \	Width (ft)		
1.3								Tota	al Q (cfs)		
iee pa	ge f	for addition	nal note	s.							1
						Т	eam Lea	der initi	ials:		_ \

SESD Project ID 15-0308 SESD Project ID: 15-0308

8

Village Creek Dieldrin Screening Final Report Page 11 of 16 Page 37 of 43

Notes: VILY - Discharge data is taken from the U.S. Geological Survey mebsite http://waterdata.usgs.gov USGS Station Number 02458600 On 6/3/15 @ 13:30 CDT Staff height = 1.28 feet Dischage = 103 ++3/2 VIL3 - On 6/3/15@ 14:00 CDT Staff height = 2.22ft Discharge = 37ft 3/s USGS Station number 02458450 VIL 2 - On U/3/15 @ 14:30 CDT staff height = 0.31 ft Discharge = 21 ft 3/s USGS Station number 02458300 5-015/15 Team Leader Initials: _____A SESD Project ID 15-0308 Page 12 of 16 Village Creek Dieldrin Screening

SESD Project ID: 15-0308

Final Report

Page 12 of 16 Page 38 of 43 10

- 11

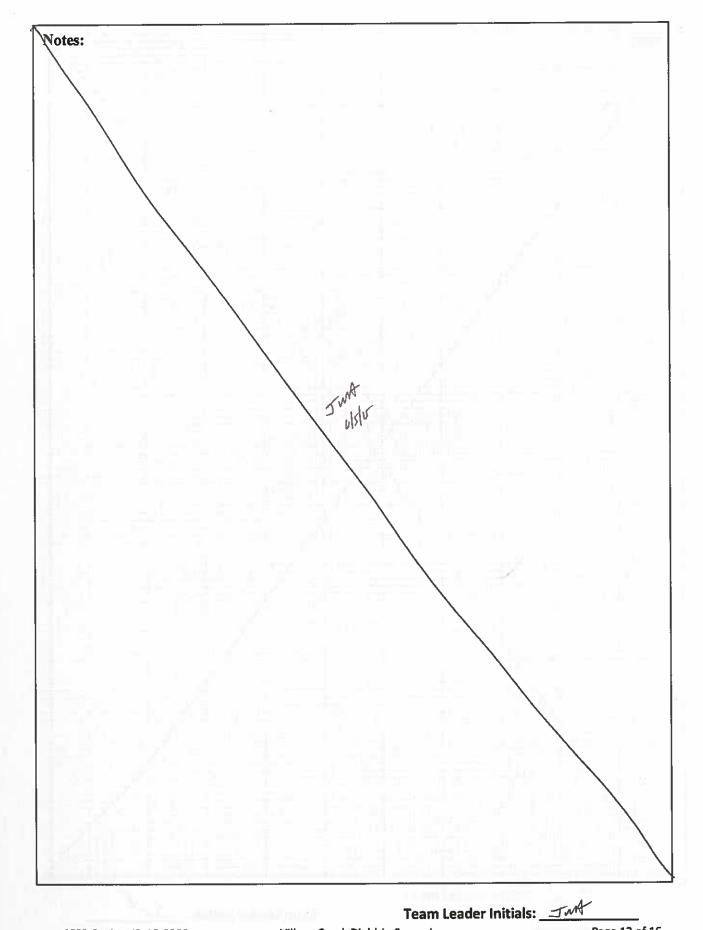
8

e.

e.

Ľ

0


g

Ű

E

1

5

SESD Project ID 15-0308 SESD Project ID: 15-0308

R

E

R

R

B

ŧ

U.

II.

2

A.

Q.

IÇ.

ų

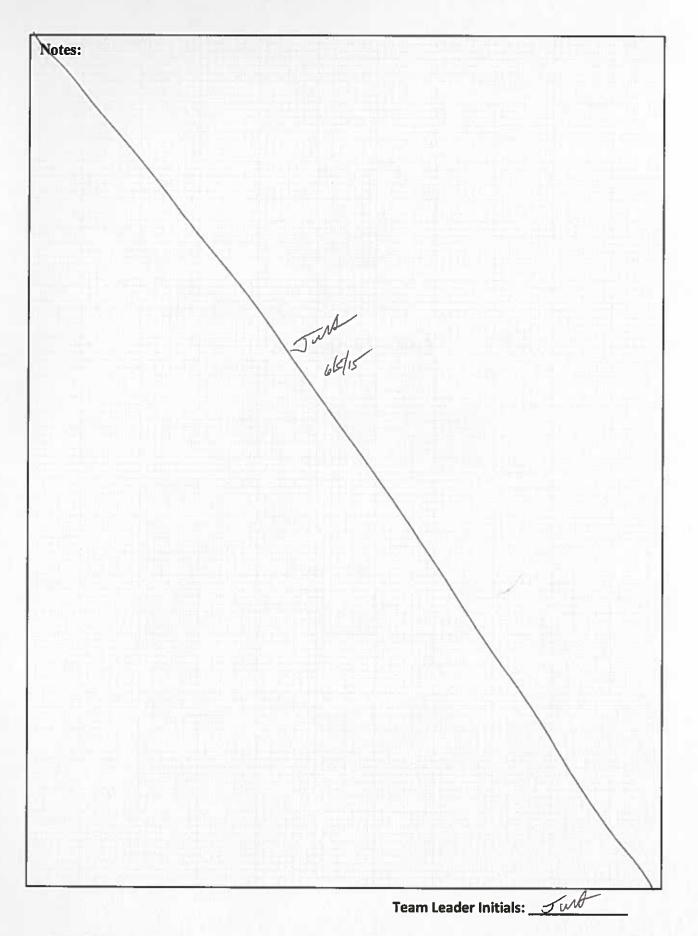
6

K,

¢,

¢,

đ,


4

Village Creek Dieldrin Screening Final Report

Page 13 of 16 Page 39 of 43

Notes: 5 white Team Leader Initials: _____M

SESD Project ID 15-0308 SESD Project ID: 15-0308 Village Creek Dieldrin Screening Final Report Page 14 of 16 Page 40 of 43 ſ

SESD Project ID 15-0308 SESD Project ID: 15-0308

ľ

I

ł

I

Village Creek Dieldrin Screening Final Report Page 15 of 16 Page 41 of 43

End of Logbook

SESD Project ID 15-0308 SESD Project ID: 15-0308 Village Creek Dieldrin Screening Final Report Page 16 of 16 Page 42 of 43 51

1

1

1

End of Report